聊聊从大模型来看NLP解决方案之UIE

转载请备注出处:https://www.cnblogs.com/zhiyong-ITNote

概述

自然语言处理NLP任务的实现,相比较以前基于传统机器学习算法实现方法,现在越来越集中使用大模型来实现。

通过------数据标注-模型训练-模型调优/微调-模型压缩-预测部署的大模型流程,覆盖NLP多场景满足开发者落地实现与灵活定制的需求。

PaddleNLP是其中典型的NLP解决方案库,通过聚合业界优质预训练模型 并提供开箱即用 的开发体验,覆盖NLP多场景的模型库搭配产业实践范例 可满足开发者灵活定制的需求。

预训练基座模型主要以ERINE系列大模型为主,毕竟是自家的噻。

之前相关的NLP系列文档也是基于预训练大模型的解决方案来实现的。可参考:
聊聊PaddleNLP库与层次多标签文本分类任务
聊聊层次多标签分类NLP任务的实践

UIE

UIE:Universal Information Extraction,通用信息抽取统一框架。官方文档:UIE

该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。PaddleNLP借鉴论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。

开箱即用

paddlenlp.Taskflow提供通用信息抽取、评价观点抽取等能力,可抽取多种类型的信息,包括但不限于命名实体识别(如人名、地名、机构名等)、关系(如电影的导演、歌曲的发行时间等)、事件(如某路口发生车祸、某地发生地震等)、以及评价维度、观点词、情感倾向等信息。用户可以使用自然语言自定义抽取目标,无需训练即可统一抽取输入文本中的对应信息。实现开箱即用,并满足各类信息抽取需求。
以实体抽取任务为例:

命名实体识别(Named Entity Recognition,简称NER),是指识别文本中具有特定意义的实体。在开放域信息抽取中,抽取的类别没有限制,用户可以自己定义。

  • 例如抽取的目标实体类型是"时间"、"选手"和"赛事名称", schema构造如下:

    ['时间', '选手', '赛事名称']

调用示例:

python 复制代码
>>> from pprint import pprint
>>> from paddlenlp import Taskflow

>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
>>> ie = Taskflow('information_extraction', schema=schema)
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!")) # Better print results using pprint
[{'时间': [{'end': 6,
          'probability': 0.9857378532924486,
          'start': 0,
          'text': '2月8日上午'}],
  '赛事名称': [{'end': 23,
            'probability': 0.8503089953268272,
            'start': 6,
            'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
  '选手': [{'end': 31,
          'probability': 0.8981548639781138,
          'start': 28,
          'text': '谷爱凌'}]}]
  • 例如抽取的目标实体类型是"肿瘤的大小"、"肿瘤的个数"、"肝癌级别"和"脉管内癌栓分级", schema构造如下:

    ['肿瘤的大小', '肿瘤的个数', '肝癌级别', '脉管内癌栓分级']

在上例中我们已经实例化了一个Taskflow对象,这里可以通过set_schema方法重置抽取目标。调用示例:

python 复制代码
>>> schema = ['肿瘤的大小', '肿瘤的个数', '肝癌级别', '脉管内癌栓分级']
>>> ie.set_schema(schema)
>>> pprint(ie("(右肝肿瘤)肝细胞性肝癌(II-III级,梁索型和假腺管型),肿瘤包膜不完整,紧邻肝被膜,侵及周围肝组织,未见脉管内癌栓(MVI分级:M0级)及卫星子灶形成。(肿物1个,大小4.2×4.0×2.8cm)。"))
[{'肝癌级别': [{'end': 20,
            'probability': 0.9243267447402701,
            'start': 13,
            'text': 'II-III级'}],
  '肿瘤的个数': [{'end': 84,
             'probability': 0.7538413804059623,
             'start': 82,
             'text': '1个'}],
  '肿瘤的大小': [{'end': 100,
             'probability': 0.8341128043459491,
             'start': 87,
             'text': '4.2×4.0×2.8cm'}],
  '脉管内癌栓分级': [{'end': 70,
               'probability': 0.9083292325934664,
               'start': 67,
               'text': 'M0级'}]}]

UIE支持多种NLP任务,毕竟是统一信息抽取框架。其它的任务可以参考官方文档。

基座模型

肯定是自家的预训练基座啦。

模型 结构 语言
uie-base (默认) 12-layers, 768-hidden, 12-heads 中文
uie-base-en 12-layers, 768-hidden, 12-heads 英文
uie-medical-base 12-layers, 768-hidden, 12-heads 中文
uie-medium 6-layers, 768-hidden, 12-heads 中文
uie-mini 6-layers, 384-hidden, 12-heads 中文
uie-micro 4-layers, 384-hidden, 12-heads 中文
uie-nano 4-layers, 312-hidden, 12-heads 中文
uie-m-large 24-layers, 1024-hidden, 16-heads 中、英文
uie-m-base 12-layers, 768-hidden, 12-heads 中、英文

uie模型是基于ERINE基座模型训练出来的。

微调---定制化

其实在我个人的角度来看,上述的内容在很多的框架、平台都已经有了;譬如Modelscope,我现在养成习惯,遇到啥NLP相关的、大模型相关的,就去Modelscope找解决策略。但在Modelscope上有个最大的问题,当然这是我个人的看法------微调支持不够,很多的模型/库压根没有微调。老实说,这的确是帮助不大,在很多时候我们需要的是可以接入的定制化实现。

这也正常,毕竟如果开放了微调,支持灵活的定制化,对开源方就不太友好了。

而相比较来说,PaddleNLP的微调支持就很到位了。

数据标注

基于doccano标注平台做数据标注。可参考: 聊聊层次多标签分类NLP任务的实践

模型微调

荐使用 Trainer API对模型进行微调。只需输入模型、数据集等就可以使用 Trainer API 高效快速地进行预训练、微调和模型压缩等任务,可以一键启动多卡训练、混合精度训练、梯度累积、断点重启、日志显示等功能,Trainer API 还针对训练过程的通用训练配置做了封装,比如:优化器、学习率调度等。

使用下面的命令,使用 uie-base 作为预训练模型进行模型微调,将微调后的模型保存至$finetuned_model:

单卡启动:

shell 复制代码
export finetuned_model=./checkpoint/model_best

python finetune.py  \
    --device gpu \
    --logging_steps 10 \
    --save_steps 100 \
    --eval_steps 100 \
    --seed 42 \
    --model_name_or_path uie-base \
    --output_dir $finetuned_model \
    --train_path data/train.txt \
    --dev_path data/dev.txt  \
    --max_seq_length 512  \
    --per_device_eval_batch_size 16 \
    --per_device_train_batch_size  16 \
    --num_train_epochs 20 \
    --learning_rate 1e-5 \
    --label_names "start_positions" "end_positions" \
    --do_train \
    --do_eval \
    --do_export \
    --export_model_dir $finetuned_model \
    --overwrite_output_dir \
    --disable_tqdm True \
    --metric_for_best_model eval_f1 \
    --load_best_model_at_end  True \
    --save_total_limit 1

模型评估

可忽略

模型预测

paddlenlp.Taskflow装载定制模型,通过task_path指定模型权重文件的路径,路径下需要包含训练好的模型权重文件model_state.pdparams。

python 复制代码
>>> from pprint import pprint
>>> from paddlenlp import Taskflow

>>> schema = ['出发地', '目的地', '费用', '时间']
# 设定抽取目标和定制化模型权重路径
>>> my_ie = Taskflow("information_extraction", schema=schema, task_path='./checkpoint/model_best')
>>> pprint(my_ie("城市内交通费7月5日金额114广州至佛山"))
[{'出发地': [{'end': 17,
           'probability': 0.9975287467835301,
           'start': 15,
           'text': '广州'}],
  '时间': [{'end': 10,
          'probability': 0.9999476678061399,
          'start': 6,
          'text': '7月5日'}],
  '目的地': [{'end': 20,
           'probability': 0.9998511131226735,
           'start': 18,
           'text': '佛山'}],
  '费用': [{'end': 15,
          'probability': 0.9994474579292856,
          'start': 12,
          'text': '114'}]}]

模型部署

  • 模型导出: 模型训练、压缩时已经自动进行了静态图的导出以及 tokenizer 配置文件保存,保存路径${finetuned_model} 下应该有 .pdimodel、.pdiparams 模型文件可用于推理。
  • 模型部署:
shell 复制代码
# UIE 模型 CPU 推理
python deploy/python/infer.py --model_dir ./checkpoint/model_best --device cpu
# UIE 模型 GPU 推理
python deploy/python/infer.py --model_dir ./checkpoint/model_best --device gpu

总结

PaddleNLP是基于预训练大模型的NLP任务解决方案库,因此其实践流程其实都是一样的:数据标注-模型训练-模型调优/微调-模型压缩-预测部署。通过对PaddleNLP库的实践与了解熟悉,我个人觉得,非常有助于掌握NLP与大模型在实际应用中的落地。建议大家多了解学习。

转载请备注出处:https://www.cnblogs.com/zhiyong-ITNote

更多PaddleNLP与大模型的文章,请上个人公众号查阅:

相关推荐
小任同学Alex1 分钟前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
敲上瘾4 小时前
操作系统的理解
linux·运维·服务器·c++·大模型·操作系统·aigc
gz7seven15 小时前
BLIP-2模型的详解与思考
大模型·llm·多模态·blip·多模态大模型·blip-2·q-former
曼城周杰伦1 天前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
我爱学Python!1 天前
解决复杂查询难题:如何通过 Self-querying Prompting 提高 RAG 系统效率?
人工智能·程序人生·自然语言处理·大模型·llm·大语言模型·rag
audyxiao0012 天前
突破自动驾驶瓶颈!KoMA:多智能体与大模型的完美融合
人工智能·机器学习·大模型·自动驾驶·多智能体
杰哥技术分享2 天前
百度飞浆:paddle 线性回归模型
百度·线性回归·paddle
Slender20013 天前
大模型KS-LLM
人工智能·深度学习·机器学习·自然语言处理·大模型·bert·知识图谱
haidizym3 天前
(笔记+作业)第四期书生大模型实战营---L0G2000 Python 基础知识
redis·笔记·python·大模型
如若1233 天前
PaddleNLP的环境配置:
计算机视觉·nlp