卷积神经网络 (CNN)

计算机视觉最常见的机器学习模型体系结构之一是卷积神经网络 (CNN)。 CNN 使用筛选器从图像中提取数值特征图,然后将特征值馈送到深度学习模型中以生成标签预测。 例如,在图像分类方案中,标签表示图像的主要主题(换句话说,这是一张关于什么的图像?)。 你可以使用不同种类的水果(如苹果、香蕉和橙子)的图像训练一个 CNN 模型,使预测的标签是给定图像中的水果类型。

在 CNN 的训练过程中,筛选器内核最初是使用随机生成的权重值定义的。 然后,随着训练过程的进行,根据已知标签值评估模型预测,并调整筛选器权重以提高准确性。 最终,经过训练的水果图像分类模型使用能够最好地提取有助于识别不同种类水果特征的筛选器权重。

下图演示了图像分类模型的 CNN 的工作原理:

1、具有已知标签的图像(例如,0:苹果、1:香蕉或 2:橙子)将馈送到网络中以训练模型。

2、当每个图像通过网络馈送时,使用一个或多个筛选器从图像中提取特征。 筛选器内核最初是随机分配的权重,并生成称为特征图的数值数组。

3、特征图平展为特征值的一维数组。

4、特征值馈送到完全连接的神经网络中。

5、神经网络的输出层使用 softmax 或类似函数生成包含每个可能类的概率值的结果,例如 [0.2, 0.5, 0.3]。

在训练期间,将输出概率与实际类标签进行比较,例如,香蕉(类 1)的图像应具有值 [0.0, 1.0, 0.0]。 预测类分数与实际类分数之间的差异用于计算模型中的损失,并修改完全连接的神经网络中的权重和特征提取层中的筛选器内核,以减少损失。

训练过程会重复多个时期,直到学习到一组最优的权重。 然后,保存权重,模型可用于预测标签未知的新图像的标签。

相关推荐
桃花键神1 分钟前
华为云Flexus+DeepSeek征文|基于Dify平台tiktok音乐领域热门短视频分析Ai agent
人工智能·华为云
几道之旅3 分钟前
mAP、AP50、AR50:目标检测中的核心评价指标解析
人工智能·目标检测·目标跟踪
搏博27 分钟前
抗量子计算攻击的数据安全体系构建:从理论突破到工程实践
人工智能·人机交互·量子计算
白熊18832 分钟前
【计算机视觉】OpenCV实战项目:GraspPicture 项目深度解析:基于图像分割的抓取点检测系统
人工智能·opencv·计算机视觉
python15644 分钟前
OpenWebUI新突破,MCPO框架解锁MCP工具新玩法
人工智能·语言模型·自然语言处理
墨绿色的摆渡人1 小时前
pytorch小记(二十一):PyTorch 中的 torch.randn 全面指南
人工智能·pytorch·python
tyatyatya1 小时前
MATLAB 神经网络的系统案例介绍
开发语言·神经网络·matlab
东临碣石822 小时前
【AI论文】EnerVerse-AC:用行动条件来构想具身环境
人工智能
lqjun08272 小时前
PyTorch实现CrossEntropyLoss示例
人工智能·pytorch·python
心灵彼岸-诗和远方2 小时前
芯片生态链深度解析(三):芯片设计篇——数字文明的造物主战争
人工智能·制造