ExpertPrompting:指导大语言模型成为杰出专家

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/


论文标题:ExpertPrompting: Instructing Large Language Models to be Distinguished Experts

论文地址:https://arxiv.org/abs/2305.14688

作者 & 机构:Benfeng Xu,An Yang,Junyang Lin,... Yongdong Zhang,and Zhendong Mao(中科大、达摩院、北邮)

如果正确设计提示词,对齐的大语言模型(LLMs)的回答质量就能大幅提高。在这篇论文中,研究者提出了 ExpertPrompting 方法,以激发大语言模型回答问题时的专家潜能。作者首先利用 "情境学习"(In-Context Learning)技术为每条特定指令自动合成详细、定制化的专家身份描述 ,然后要求 LLM 根据这样的智能体背景提供答案。基于这种增强的提示策略 ,作者使用 GPT-3.5 生成了一套新的遵循指令的数据,并训练了一个名为 ExpertLLaMA 的具有竞争力的开源聊天助手。作者使用基于 GPT-4 的评估表明:

  • 专家数据的质量显著高于普通答案;
  • ExpertLLaMA 超越了现有的开源对手,并达到了原始 ChatGPT 能力的 96%。

所有数据和 ExpertLLaMA 模型都将在 https://github.com/OFA-Sys/ExpertLLaMA 上公开。

论文的关键要点总结如下

这篇论文的主要论点是什么?论文的主要论点是提出了一种名为 "ExpertPrompting" 的方法,通过为大语言模型(LLM)提供详细的专家身份描述,指导它们像专家一样回答问题,从而显著提高回答的质量。

作者为什么认为这是一个重要的问题?作者认为,尽管大语言模型在多种语言任务上表现出色,但用户满意度和输出质量往往取决于提示(Prompt)的设计艺术。因此,提高 LLMs 的输出质量和用户满意度是一个重要问题

作者提出了什么解决方案?作者提出了 "ExpertPrompting" 框架,该框架利用上下文学习(In-Context Learning)自动生成特定指令的详细和定制化的专家身份描述,并要求 LLM 基于这样的智能体背景提供答案。

作者如何验证他们的方法?作者通过使用 GPT-3.5 生成新的指令遵循数据集,并训练了一个名为 ExpertLLaMA 的开源聊天助手。他们使用基于 GPT4 的评估来证明 ExpertPrompting 生成的数据质量显著高于普通答案,并且 ExpertLLaMA 在性能上超过了现有的开源对手,达到了原始 ChatGPT 能力的 96%。

作者的方法有哪些局限性?论文中没有明确指出方法的局限性,但通常这类方法可能面临的局限性包括:生成的专家身份描述可能不总是完全准确或适合;对于某些特定领域或任务,可能需要更多的微调;以及可能存在的计算资源限制。

作者的方法与现有方法相比有哪些优势和不足?优势在于 ExpertPrompting 能够自动生成专家身份描述,并且可以广泛应用于不同领域或类型的指令。不足之处可能在于需要大量的指令微调数据来微调 LLM 以适应特定的专家身份。

作者的方法是否可以推广到其他领域或问题?是的,ExpertPrompting 方法的通用性和自动化特性意味着它可以推广到其他领域或问题,只要能够为特定指令生成合适的专家身份描述。

作者是否提供了足够的证据来支持他们的观点?作者通过实验设置、数据评估和模型评估提供了充分的证据来支持他们的观点。他们展示了 ExpertPrompting 在提高答案质量和聊天助手性能方面的有效性。

论文的结论是什么?论文的结论是,ExpertPrompting 是一种有效的增强提示策略,可以使 LLM 像杰出专家一样回答问题。它自动、通用且易于实施。基于这种策略,作者训练了 ExpertLLaMA,并证明了其在性能上的优势。

这篇论文对相关领域有哪些贡献?这篇论文对相关领域(如大语言模型、智能体、聊天机器人开发等)的贡献在于提出了一种新的提示策略,可以显著提高 LLM 的输出质量和聊天助手的性能。此外,它还提供了一个新的开源聊天助手模型 ExpertLLaMA,以及相关的训练数据,为未来的研究提供了有价值的资源。


相关推荐
在未来等你16 小时前
RAG实战指南 Day 4:LlamaIndex框架实战指南
大语言模型·rag·llamaindex·检索增强生成·ai开发
小白跃升坊22 天前
【干货分享】手把手教你实现AI应用对话批量自动化测试(含源码)
ai·大语言模型·maxkb
滴答滴答嗒嗒滴23 天前
TensorZero:开源 LLM 应用优化与可观测性平台
人工智能·ai·开源·llm·大语言模型·tensorzero
小白跃升坊24 天前
AI赋能文档创作:智能生成+云端下载,解锁高效办公新姿势
ai·大语言模型·maxkb
小白跃升坊24 天前
破局AI问答专有名词检索迷局:分词期神器强势登场!
ai·大语言模型·maxkb
小白跃升坊24 天前
告别手动码字!AI智能生成+文档下载,职场/学习效率翻倍攻略!
ai·大语言模型·maxkb
狐5725 天前
2025-05-08-deepseek本地化部署
人工智能·大语言模型
xiaoming-wu1 个月前
数据分析Agent构建
数据分析·大语言模型·agent
程序员老周6661 个月前
4.大语言模型预备数学知识
人工智能·神经网络·线性代数·自然语言处理·大语言模型·概率论·数学基础
柠石榴1 个月前
【论文阅读笔记】Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation
论文阅读·提示工程·text2sql·llms·dail-sql