注:1. 沐神对应章节视频出处
2.代码使用Jupyter Notebook运行更方便
3.文章笔记出处
一、层和块
层:层(1)接受一组输入, (2)生成相应的输出, (3)由一组可调整参数描述。 当我们使用softmax回归时,一个单层本身就是模型。 然而,即使我们随后引入了多层感知机,我们仍然可以认为该模型保留了上面所说的基本架构。
块: 块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的,如图所示。 通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。 在定义我们自己的块时,由于框架的自动微分提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数即可。
例如:
python
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
结果:
在这个例子中,我们通过实例化**nn.Sequential
** 来构建我们的模型, 层的执行顺序是作为参数传递的 。 简而言之,nn.Sequential
定义了一种特殊的Module
, 即在PyTorch中表示一个块的类, 它维护了一个由**Module
组成的有序列表** 。 注意,两个全连接层都是Linear
类的实例, Linear
类本身就是Module
的子类。 另外,到目前为止,我们一直在通过net(X)
调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)
的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
1.1 自定义块
在下面的代码片段中,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP
类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数(Python中的__init__
函数)和前向传播函数。
python
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
我们首先看一下前向传播函数,它以X
作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。 在这个MLP
实现中,两个层都是实例变量。
接着我们实例化多层感知机的层,然后在每次调用前向传播函数时调用这些层。 注意一些关键细节: 首先,我们定制的**__init__
函数通过super().__init__()
调用父类的__init__
函数** , 省去了重复编写模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hidden
和self.out
。 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。
块的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP
类)或具有中等复杂度的各种组件。
1.2 顺序块
现在我们可以更仔细地看看Sequential
类是如何工作的, 回想一下Sequential
的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential
, 我们只需要定义两个关键函数:
-
一种将块逐个追加到列表中的函数;
-
一种前向传播函数,用于将输入按追加块的顺序传递给块组成的"链条"。
下面的MySequential
类提供了与默认Sequential
类相同的功能。
python
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict(有序字典)
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
注:_modules是一个特殊的容器,pytorch知道放进去的就是我们需要的"层"
为什么我们使用_modules而不是自己定义一个Python列表? 简而言之,_modules
的主要优点是: 在模块的参数初始化过程中,系统知道在_modules
字典中查找需要初始化参数的子块。
1.3 前向传播中加入代码
Sequential
类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。如下所示,可以灵活定义:
python
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
# 控制流
while X.abs().sum() > 1:
X /= 2
return X.sum()
我们还可以混合搭配各种块,如下:
python
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
# Sequential中有刚定义的NestMLP以及前面的FixedHiddenMLP
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
二、参数管理
2.1 参数访问
先定义一个简单的网络:
python
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
输出结果:
python
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
print(net[0].bias.grad)
输出结果:
注意,每个参数都表示为参数类的一个实例。参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值(.data)的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。
下面定义一个嵌套块组成的网络,看看如何访问参数:
python
def block1():
return nn.Sequential(nn.Linear(4,8), nn.ReLU(),
nn.Linear(8,4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(),nn.Linear(4, 1))
print(rgnet)
结果:
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。 如下所示:
2.2 参数初始化
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init
模块提供了多种预置初始化方法。
内置初始化器如:
python
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias) # 全0
nn.init.constant_(m.weight, 1) # 常数
nn.init.xavier_uniform_(m.weight) # xavier方法
nn.init.uniform_(m.weight, -10, 10) # 均匀分布
还可以自定义初始化方法,如:
python
def my_init(m):
if type(m) == nn.Linear:
print("Init", *[(name, param.shape)
for name, param in m.named_parameters()][0])
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
也可以手动设置参数如:
python
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
2.3 参数绑定
我们还可以定义一个共享层,在网络的任意处使用:
python
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
shared, nn.ReLU(),
shared, nn.ReLU(),
nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
结果:可以看到他们是同一个对象,而不是只有相同的值
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间两个shared的梯度会加在一起。
三、自定义层
3.1 不带参数的层
首先,我们构造一个没有任何参数的自定义层。 下面的CenteredLayer
类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。
python
import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
现在,我们可以将层作为组件合并到更复杂的模型中。
python
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()
输出结果:
我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数如上图。
3.2 带有参数的层
python
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
linear = MyLinear(5, 3)
linear(torch.rand(2, 5))
四、读写文件
注:
-
save
和load
函数可用于张量对象的文件读写。 -
我们可以通过参数字典保存和加载网络的全部参数。
-
保存架构必须在代码中完成,而不是在参数中完成。(保存单个权重向量(或其他张量)确实有用, 但是如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。 毕竟,我们可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 因为模型本身可以包含任意代码,所以模型本身难以序列化。 因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。)