【深度学习实战(22)】解决分类不均衡问题之Focal Loss

一、Focal Loss公式介绍

Focal loss是何恺明大神提出的一种新的loss计算方案。其具有两个重要的特点。

1、控制正负样本的权重

2、控制容易分类和难分类样本的权重

论文:

二分类问题交叉熵损失

公式:

我们可以利用如下Pt简化交叉熵loss。

此时:

代码:

cpp 复制代码
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')

正负样本平衡项

-想要降低负样本的影响,可以在常规的损失函数前增加一个系数αt。与Pt类似,当label=1的时候,αt=α;当label=otherwise的时候,αt=1 - α,a的范围也是0到1。此时我们便可以通过设置α实现控制正负样本对loss的贡献。

公式:

其中:

分解开就是:

难易样本平衡项

样本属于某个类,且预测结果中该类的概率越大,其越容易分类 ,在二分类问题中,正样本的标签为1,负样本的标签为0,p代表样本为1类的概率。

对于正样本而言,1-p的值越大,样本越难分类。

对于负样本而言,p的值越大,样本越难分类。

Pt的定义如下

所以利用1-Pt就可以计算出每个样本属于容易分类或者难分类。

具体实现方式如下。

两种权重控制方法合并,就得到了Focal Loss

通过如下公式就可以实现控制正负样本的权重和控制容易分类和难分类样本的权重。

分解开就是:

二、Focal Loss代码实现

cpp 复制代码
import torch
import torch.nn as nn
import torch.functional as F

class WeightedFocalLoss(nn.Module):
    "Non weighted version of Focal Loss"    
    def __init__(self, alpha=.25, gamma=2):
            super(WeightedFocalLoss, self).__init__()  
            # --------------#
            #   平衡正负样本系数
            # --------------#      
            self.alpha = torch.tensor([alpha, 1-alpha]).cuda()      
            # --------------#
            #   平衡难易样本系数
            # --------------#   
            self.gamma = gamma
            
    def forward(self, inputs, targets):
            # --------------#
            #   分类交叉熵损失
            # --------------# 
            BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')   
            # --------------#
            #   标签GT
            # --------------#      
            targets = targets.type(torch.long)     
            # --------------#
            #   计算at
            # --------------#    
            at = self.alpha.gather(0, targets.data.view(-1))   
            # --------------#
            #   计算pt: BEC_loss = -log(pt)  --> pt = torch.exp(-BCE_loss)   
            # --------------#       
            pt = torch.exp(-BCE_loss)   
            # --------------#
            #   计算Focal Loss
            # --------------#       
            F_loss = at*(1-pt)**self.gamma * BCE_loss        
            return F_loss.mean()
相关推荐
咚咚王者2 分钟前
人工智能之核心基础 机器学习 第十二章 半监督学习
人工智能·学习·机器学习
人工智能训练11 分钟前
UE5 如何显示蓝图运行流程
人工智能·ue5·ai编程·数字人·蓝图
deephub42 分钟前
构建自己的AI编程助手:基于RAG的上下文感知实现方案
人工智能·机器学习·ai编程·rag·ai编程助手
AI营销干货站44 分钟前
工业B2B获客难?原圈科技解析2026五大AI营销增长引擎
人工智能
程序员老刘·1 小时前
重拾Eval能力:D4rt为Flutter注入AI进化基因
人工智能·flutter·跨平台开发·客户端开发
kebijuelun1 小时前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
Deepoch1 小时前
Deepoc具身模型开发板:让炒菜机器人成为您的智能厨师
人工智能·机器人·开发板·具身模型·deepoc·炒菜机器人·厨房机器人
Elastic 中国社区官方博客1 小时前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
寻星探路1 小时前
【算法专题】滑动窗口:从“无重复字符”到“字母异位词”的深度剖析
java·开发语言·c++·人工智能·python·算法·ai
盈创力和20071 小时前
智慧城市中智能井盖的未来演进:从边缘感知节点到城市智能体
人工智能·智慧城市·智慧市政·智慧水务·智能井盖传感器·综合管廊