【深度学习实战(22)】解决分类不均衡问题之Focal Loss

一、Focal Loss公式介绍

Focal loss是何恺明大神提出的一种新的loss计算方案。其具有两个重要的特点。

1、控制正负样本的权重

2、控制容易分类和难分类样本的权重

论文:

二分类问题交叉熵损失

公式:

我们可以利用如下Pt简化交叉熵loss。

此时:

代码:

cpp 复制代码
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')

正负样本平衡项

-想要降低负样本的影响,可以在常规的损失函数前增加一个系数αt。与Pt类似,当label=1的时候,αt=α;当label=otherwise的时候,αt=1 - α,a的范围也是0到1。此时我们便可以通过设置α实现控制正负样本对loss的贡献。

公式:

其中:

分解开就是:

难易样本平衡项

样本属于某个类,且预测结果中该类的概率越大,其越容易分类 ,在二分类问题中,正样本的标签为1,负样本的标签为0,p代表样本为1类的概率。

对于正样本而言,1-p的值越大,样本越难分类。

对于负样本而言,p的值越大,样本越难分类。

Pt的定义如下

所以利用1-Pt就可以计算出每个样本属于容易分类或者难分类。

具体实现方式如下。

两种权重控制方法合并,就得到了Focal Loss

通过如下公式就可以实现控制正负样本的权重和控制容易分类和难分类样本的权重。

分解开就是:

二、Focal Loss代码实现

cpp 复制代码
import torch
import torch.nn as nn
import torch.functional as F

class WeightedFocalLoss(nn.Module):
    "Non weighted version of Focal Loss"    
    def __init__(self, alpha=.25, gamma=2):
            super(WeightedFocalLoss, self).__init__()  
            # --------------#
            #   平衡正负样本系数
            # --------------#      
            self.alpha = torch.tensor([alpha, 1-alpha]).cuda()      
            # --------------#
            #   平衡难易样本系数
            # --------------#   
            self.gamma = gamma
            
    def forward(self, inputs, targets):
            # --------------#
            #   分类交叉熵损失
            # --------------# 
            BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')   
            # --------------#
            #   标签GT
            # --------------#      
            targets = targets.type(torch.long)     
            # --------------#
            #   计算at
            # --------------#    
            at = self.alpha.gather(0, targets.data.view(-1))   
            # --------------#
            #   计算pt: BEC_loss = -log(pt)  --> pt = torch.exp(-BCE_loss)   
            # --------------#       
            pt = torch.exp(-BCE_loss)   
            # --------------#
            #   计算Focal Loss
            # --------------#       
            F_loss = at*(1-pt)**self.gamma * BCE_loss        
            return F_loss.mean()
相关推荐
靴子学长4 分钟前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME1 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself1 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董2 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee2 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa2 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐2 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空2 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er2 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶