【深度学习实战(22)】解决分类不均衡问题之Focal Loss

一、Focal Loss公式介绍

Focal loss是何恺明大神提出的一种新的loss计算方案。其具有两个重要的特点。

1、控制正负样本的权重

2、控制容易分类和难分类样本的权重

论文:

二分类问题交叉熵损失

公式:

我们可以利用如下Pt简化交叉熵loss。

此时:

代码:

cpp 复制代码
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')

正负样本平衡项

-想要降低负样本的影响,可以在常规的损失函数前增加一个系数αt。与Pt类似,当label=1的时候,αt=α;当label=otherwise的时候,αt=1 - α,a的范围也是0到1。此时我们便可以通过设置α实现控制正负样本对loss的贡献。

公式:

其中:

分解开就是:

难易样本平衡项

样本属于某个类,且预测结果中该类的概率越大,其越容易分类 ,在二分类问题中,正样本的标签为1,负样本的标签为0,p代表样本为1类的概率。

对于正样本而言,1-p的值越大,样本越难分类。

对于负样本而言,p的值越大,样本越难分类。

Pt的定义如下

所以利用1-Pt就可以计算出每个样本属于容易分类或者难分类。

具体实现方式如下。

两种权重控制方法合并,就得到了Focal Loss

通过如下公式就可以实现控制正负样本的权重和控制容易分类和难分类样本的权重。

分解开就是:

二、Focal Loss代码实现

cpp 复制代码
import torch
import torch.nn as nn
import torch.functional as F

class WeightedFocalLoss(nn.Module):
    "Non weighted version of Focal Loss"    
    def __init__(self, alpha=.25, gamma=2):
            super(WeightedFocalLoss, self).__init__()  
            # --------------#
            #   平衡正负样本系数
            # --------------#      
            self.alpha = torch.tensor([alpha, 1-alpha]).cuda()      
            # --------------#
            #   平衡难易样本系数
            # --------------#   
            self.gamma = gamma
            
    def forward(self, inputs, targets):
            # --------------#
            #   分类交叉熵损失
            # --------------# 
            BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')   
            # --------------#
            #   标签GT
            # --------------#      
            targets = targets.type(torch.long)     
            # --------------#
            #   计算at
            # --------------#    
            at = self.alpha.gather(0, targets.data.view(-1))   
            # --------------#
            #   计算pt: BEC_loss = -log(pt)  --> pt = torch.exp(-BCE_loss)   
            # --------------#       
            pt = torch.exp(-BCE_loss)   
            # --------------#
            #   计算Focal Loss
            # --------------#       
            F_loss = at*(1-pt)**self.gamma * BCE_loss        
            return F_loss.mean()
相关推荐
caiyueloveclamp1 天前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v01 天前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou11211 天前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张1 天前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
dalalajjl1 天前
每个Python开发者都应该试试知道创宇AiPy!工作效率提升500%的秘密武器
大数据·人工智能
wheeldown1 天前
【Rokid+CXR-M】基于Rokid CXR-M SDK的博物馆AR导览系统开发全解析
c++·人工智能·ar
爱看科技1 天前
AI智能计算竞赛“战火重燃”,谷歌/高通/微美全息构建AI全栈算力开启巅峰角逐新篇
人工智能
IT_陈寒1 天前
Redis性能翻倍的5个冷门技巧,90%开发者都不知道第3个!
前端·人工智能·后端
浩浩的代码花园1 天前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
晨非辰1 天前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年