数据分析:筛选多组交集特征

介绍

有时候需要在多个组间筛选它们的交集特征,本文利用R语言实现该目的

加载R包

R 复制代码
library(UpSetR)
library(tidyverse)

Upset画图

R 复制代码
movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), 
                   header = T, sep = ";")
movies_list <- list(
  Action = movies %>%
    dplyr::filter(Action == 1) %>%
    dplyr::pull(Name),
  Adventure = movies %>%
    dplyr::filter(Adventure == 1) %>%
    dplyr::pull(Name),
  Children = movies %>%
    dplyr::filter(Children == 1) %>%
    dplyr::pull(Name),
  Comedy = movies %>%
    dplyr::filter(Comedy == 1) %>%
    dplyr::pull(Name),
  Crime = movies %>%
    dplyr::filter(Crime == 1) %>%
    dplyr::pull(Name),
  Documentary = movies %>%
    dplyr::filter(Documentary == 1) %>%
    dplyr::pull(Name)  
)

movies_pl <- UpSetR::upset(
  data = fromList(movies_list),
  nsets = 3, 
  sets = c("Action", "Adventure", "Children", 
           "Comedy", "Crime", "Documentary"),
  order.by = "freq",
  main.bar.color = "gray10",
  sets.bar.color = "gray",
  matrix.color = "gray10",
  mainbar.y.label = "NO. of movies",
  sets.x.label = "NO. of movies")

movies_pl

判断交集特征

  • 去冗余变量 df_uniq_movie

  • 分组变量标签 df_group_movie

R 复制代码
df_uniq_movie <- data.frame(feature = unique(unlist(movies_list)))
df_group_movie <- lapply(movies_list, function(x){
  data.frame(feature = x)
}) %>% 
  dplyr::bind_rows(.id = "Sequence")
  • 给变量打上交集标签
R 复制代码
df_int_movie <- lapply(df_uniq_movie$feature, function(x){
  intersection <- df_group_movie %>% 
    dplyr::filter(feature == x) %>% 
    dplyr::arrange(Sequence) %>% 
    dplyr::pull(Sequence) %>% 
    paste0(collapse = "|")
  # build the dataframe
  return(data.frame(feature = x, int = intersection))
}) %>% 
  dplyr::bind_rows()

head(df_int_movie)
相关推荐
数据科学作家1 天前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
liliangcsdn1 天前
Leiden社区发现算法的学习和示例
学习·数据分析·知识图谱
云天徽上1 天前
【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·数据挖掘·数据分析·pyecharts
THMAIL1 天前
机器学习从入门到精通 - 数据预处理实战秘籍:清洗、转换与特征工程入门
人工智能·python·算法·机器学习·数据挖掘·逻辑回归
Daisy_JuJuJu1 天前
【科研成果速递-IJGIS】如何描述与分类移动对象的时空模式?一个新的分类框架与体系!
分类·数据挖掘·科研·运动模式·移动对象
zhangfeng11331 天前
BiocManager下载失败 R语言 解决办法
开发语言·r语言
zzywxc7871 天前
AI在金融、医疗、教育、制造业等领域的落地案例(含代码、流程图、Prompt示例与图表)
人工智能·spring·机器学习·金融·数据挖掘·prompt·流程图
东哥说-MES|从入门到精通2 天前
企业微信智能表格高效使用指南
数据分析·项目管理·企业微信·智能表格
半瓶榴莲奶^_^2 天前
python基础案例-数据可视化
python·信息可视化·数据分析
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的高级大豆农业数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·数据分析·课程设计