数据分析:筛选多组交集特征

介绍

有时候需要在多个组间筛选它们的交集特征,本文利用R语言实现该目的

加载R包

R 复制代码
library(UpSetR)
library(tidyverse)

Upset画图

R 复制代码
movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), 
                   header = T, sep = ";")
movies_list <- list(
  Action = movies %>%
    dplyr::filter(Action == 1) %>%
    dplyr::pull(Name),
  Adventure = movies %>%
    dplyr::filter(Adventure == 1) %>%
    dplyr::pull(Name),
  Children = movies %>%
    dplyr::filter(Children == 1) %>%
    dplyr::pull(Name),
  Comedy = movies %>%
    dplyr::filter(Comedy == 1) %>%
    dplyr::pull(Name),
  Crime = movies %>%
    dplyr::filter(Crime == 1) %>%
    dplyr::pull(Name),
  Documentary = movies %>%
    dplyr::filter(Documentary == 1) %>%
    dplyr::pull(Name)  
)

movies_pl <- UpSetR::upset(
  data = fromList(movies_list),
  nsets = 3, 
  sets = c("Action", "Adventure", "Children", 
           "Comedy", "Crime", "Documentary"),
  order.by = "freq",
  main.bar.color = "gray10",
  sets.bar.color = "gray",
  matrix.color = "gray10",
  mainbar.y.label = "NO. of movies",
  sets.x.label = "NO. of movies")

movies_pl

判断交集特征

  • 去冗余变量 df_uniq_movie

  • 分组变量标签 df_group_movie

R 复制代码
df_uniq_movie <- data.frame(feature = unique(unlist(movies_list)))
df_group_movie <- lapply(movies_list, function(x){
  data.frame(feature = x)
}) %>% 
  dplyr::bind_rows(.id = "Sequence")
  • 给变量打上交集标签
R 复制代码
df_int_movie <- lapply(df_uniq_movie$feature, function(x){
  intersection <- df_group_movie %>% 
    dplyr::filter(feature == x) %>% 
    dplyr::arrange(Sequence) %>% 
    dplyr::pull(Sequence) %>% 
    paste0(collapse = "|")
  # build the dataframe
  return(data.frame(feature = x, int = intersection))
}) %>% 
  dplyr::bind_rows()

head(df_int_movie)
相关推荐
梦想的初衷~8 分钟前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法
开发语言·机器学习·r语言
步、步、为营42 分钟前
.NET 8 Release Candidate 1 (RC1)现已发布,包括许多针对ASP.NET Core的重要改进!
r语言·asp.net·.net
Teacher.chenchong1 小时前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
星座5282 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
wh_xia_jun14 小时前
基础分类模型及回归简介(一)
分类·数据挖掘·回归
淦暴尼16 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
Chef_Chen18 小时前
从0开始学习R语言--Day49--Lasso-Cox 回归
学习·回归·r语言
ClouGence1 天前
CloudCanal + Apache Paimon + StarRocks 实时构建湖仓一体架构
后端·数据挖掘·数据分析
SickeyLee1 天前
对比分析:给数据找个 “参照物”,让孤立数字变 “决策依据”
信息可视化·数据挖掘·数据分析
Rita的程序bug1 天前
R语言基础| 基本图形绘制(条形图、堆积图、分组图、填充条形图、均值条形图)
开发语言·信息可视化·r语言