数据分析:筛选多组交集特征

介绍

有时候需要在多个组间筛选它们的交集特征,本文利用R语言实现该目的

加载R包

R 复制代码
library(UpSetR)
library(tidyverse)

Upset画图

R 复制代码
movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), 
                   header = T, sep = ";")
movies_list <- list(
  Action = movies %>%
    dplyr::filter(Action == 1) %>%
    dplyr::pull(Name),
  Adventure = movies %>%
    dplyr::filter(Adventure == 1) %>%
    dplyr::pull(Name),
  Children = movies %>%
    dplyr::filter(Children == 1) %>%
    dplyr::pull(Name),
  Comedy = movies %>%
    dplyr::filter(Comedy == 1) %>%
    dplyr::pull(Name),
  Crime = movies %>%
    dplyr::filter(Crime == 1) %>%
    dplyr::pull(Name),
  Documentary = movies %>%
    dplyr::filter(Documentary == 1) %>%
    dplyr::pull(Name)  
)

movies_pl <- UpSetR::upset(
  data = fromList(movies_list),
  nsets = 3, 
  sets = c("Action", "Adventure", "Children", 
           "Comedy", "Crime", "Documentary"),
  order.by = "freq",
  main.bar.color = "gray10",
  sets.bar.color = "gray",
  matrix.color = "gray10",
  mainbar.y.label = "NO. of movies",
  sets.x.label = "NO. of movies")

movies_pl

判断交集特征

  • 去冗余变量 df_uniq_movie

  • 分组变量标签 df_group_movie

R 复制代码
df_uniq_movie <- data.frame(feature = unique(unlist(movies_list)))
df_group_movie <- lapply(movies_list, function(x){
  data.frame(feature = x)
}) %>% 
  dplyr::bind_rows(.id = "Sequence")
  • 给变量打上交集标签
R 复制代码
df_int_movie <- lapply(df_uniq_movie$feature, function(x){
  intersection <- df_group_movie %>% 
    dplyr::filter(feature == x) %>% 
    dplyr::arrange(Sequence) %>% 
    dplyr::pull(Sequence) %>% 
    paste0(collapse = "|")
  # build the dataframe
  return(data.frame(feature = x, int = intersection))
}) %>% 
  dplyr::bind_rows()

head(df_int_movie)
相关推荐
云天徽上2 小时前
【数据可视化-21】水质安全数据可视化:探索化学物质与水质安全的关联
安全·机器学习·信息可视化·数据挖掘·数据分析
谁家有个大人3 小时前
Python数据清洗笔记(上)
开发语言·笔记·python·数据分析
Jayen H5 小时前
数据分析:用Excel做周报
数据挖掘·数据分析
袁袁袁袁满7 小时前
《巧用DeepSeek快速搞定数据分析》书籍分享
数据挖掘·数据分析
穆易青7 小时前
2025.04.23【探索工具】| STEMNET:高效数据排序与可视化的新利器
python·信息可视化·数据分析·ordering·visualisation
AI大模型顾潇9 小时前
[特殊字符] 大模型对话风格微调项目实战——模型篇 [特殊字符]✨
人工智能·算法·机器学习·数据挖掘·大模型·微调·ai大模型
lilye6610 小时前
精益数据分析(16/126):掌握关键方法,探寻创业真谛
人工智能·数据挖掘·数据分析
用户1997010801811 小时前
深入研究:Shopee商品详情API接口详解
大数据·爬虫·数据挖掘
jerry20110813 小时前
R语言之rjava版本不匹配解决方法
开发语言·r语言
璞华Purvar14 小时前
璞华ChatBI闪耀2025数博会:对话式数据分析引领数智化转型新范式
microsoft·数据挖掘·数据分析