第十五届蓝桥杯省赛第二场C/C++B组F题【狡兔k窟】题解(AC)





题意分析

有一个 n n n 个点, n − 1 n-1 n−1 条边的无向图,边权均为 1 1 1。

每个点隶属于一个集合,同一个集合的点可以互相传送。

给定 m m m 个询问,求 x , y x, y x,y 的最短距离。

最短路解法

步骤:

  1. 建图。
  2. 对于所有询问各跑一次最短路算法。

可选用的最短路算法:

  • Spfa,单次时间复杂度 O ( n ) ∼ O ( n 2 ) O(n) \sim O(n^2) O(n)∼O(n2),总时间复杂度 O ( n 2 ) ∼ O ( n 3 ) O(n^2) \sim O(n^3) O(n2)∼O(n3)。
  • Dijkstra,单词时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),总时间复杂度 O ( n 2 log ⁡ n ) O(n^2\log n) O(n2logn)。
01 BFS 解法

观察发现,本题仅存在边权为 0 0 0 和 1 1 1 的边,故上述最短路算法存在多余开销,我们考虑使用 BFS 算法进行求解,并使用 deque 进行维护。

进行扩展时,若是边权为 0 0 0 的边,则放入队头,反之放入队尾。

最坏时,每条边均扩展 n n n 个点,单次时间复杂度 O ( n 2 ) O(n^2) O(n2),总时间复杂度 O ( n 3 ) O(n^3) O(n3)。

BFS 解法

样例如下:

我们用虚线表示同一个组别中的连线。

合并 1 , 4 1, 4 1,4:

合并 2 , 6 2, 6 2,6:

合并 3 , 5 3, 5 3,5:

那么,在合并之后,当我们要算两个点之间的最短距离时,可以直接用 BFS 算法解决。

观察上图发现,因为组别内的点的边权为 0 0 0,所以我们可以将所有同一个组别的点进行合并,将点于点之间的最短路转换为组别于组别之间的最短路。

单词时间复杂度 O ( n ) O(n) O(n),总时间复杂度 O ( n 2 ) O(n^2) O(n2)。

cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <vector>

using namespace std;

const int N = 5e3 + 10, M = N * 4;

int n, m;
int h[N], e[M], w[M], ne[M], idx;
int belong[N];
vector<int> g[N];
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void bfs(int u, int v)
{
    memset(dist, 0x3f, sizeof dist);
    memset(st, 0, sizeof st);
    dist[u] = 0;
    queue<int> q;
    q.push(u);
    
    while (q.size())
    {
        auto t = q.front();
        q.pop();
        
        for (int i = h[t]; ~i; i = ne[i] )
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                q.push(j);
            }
        }
    }
    
    cout << dist[v] << endl;
}

int main()
{
	ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin >> n >> m;
    
    memset(h, -1, sizeof h);
    
    for (int i = 1; i <= n; ++ i )
    {
        int x;
        cin >> x;
        belong[i] = x;
        g[x].push_back(i);
    }
    
    for (int i = 1; i < n; ++ i )
    {
        int a, b;
        cin >> a >> b;
        a = belong[a], b = belong[b];
        add(a, b, 1), add(b, a, 1);
    }
    
    while (m -- )
    {
        int a, b;
        cin >> a >> b;
        bfs(belong[a], belong[b]);
    }
    
    return 0;
}

【在线测评】

相关推荐
qq_433554546 分钟前
C++ 面向对象编程:+号运算符重载,左移运算符重载
开发语言·c++
努力学习编程的伍大侠10 分钟前
基础排序算法
数据结构·c++·算法
yuyanjingtao1 小时前
CCF-GESP 等级考试 2023年9月认证C++四级真题解析
c++·青少年编程·gesp·csp-j/s·编程等级考试
闻缺陷则喜何志丹1 小时前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
charlie1145141911 小时前
C++ STL CookBook
开发语言·c++·stl·c++20
小林熬夜学编程2 小时前
【Linux网络编程】第十四弹---构建功能丰富的HTTP服务器:从状态码处理到服务函数扩展
linux·运维·服务器·c语言·网络·c++·http
倔强的石头1062 小时前
【C++指南】类和对象(九):内部类
开发语言·c++
Jackey_Song_Odd2 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
A懿轩A3 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
机器视觉知识推荐、就业指导3 小时前
C++设计模式:享元模式 (附文字处理系统中的字符对象案例)
c++