目标检测网络YOLO进化之旅

yolo系列网络在目标检测领域取得了巨大的成功, 尤其是在工程实践中, 以其出色的性能优势获得了广泛的应用落地。

YOLO的前3个版本是由同一个作者团队出品, 算是官方版本。 之后的版本都是各个研究团队自己改进的版本, 之间并无明显的继承关系。

其中v5和v8 版本由Ultralytics 公司出品, 该公司是领先的人工智能公司,以yolov5网络出名。 该项目在github上获得了极高的关注, 获得了接近4.7万star。

项目地址: https://github.com/ultralytics/yolov5

版本 时间 主要改进
YOLOv1 2016.05 首次提出
YOLOv2 2016.12 1 采用BN; 2 采用448*448分辨率预训练Imagenet; 3 去掉fc,采用全卷积; 4 采用anchor, 并采用k-means聚类选择anchor的先验尺寸; 5 添加一个旁路, 在更大的特征图26*26上预测 6 多尺度训练:每10batch 采用不同的输入图像尺寸,从320~608, 间隔32 : 7 提出了Darknet-19 作为backbone
YOLOv3 2018.04 1 提出了Darknet-53 作为backbone; 2 采用了FPN
YOLOv4 2020.04 1 改进了backbone,提出CSPDarknet53, 并改进了SAM, PAN, BN等模块; 2 数据增强:提出了Mosaci数据增强;提出了自对抗训练SAT; 3 采用了CIoU作为loss; 4 采用Mish作为激活函数; 5 用进化算法调了超参数
YOLOv5 2020 待补充
YOLOF 2021.03
YOLOX 2021.09
YOLOv7 2022.07
YOLOv6 2022.09
YOLOE 2022.12
YOLOv8 2023
YOLOR 2023.09
YOLOv9 2024.02

参考:

1\] https://blog.csdn.net/leonardotu/article/details/137372018

相关推荐
冷yan~8 分钟前
构建下一代AI智能体:基于Spring AI的多轮对话应用
java·人工智能·spring·ai
fouen10 分钟前
【语义分割专栏】先导篇:评价指标(PA,CPA,IoU,mIoU,FWIoU,F1)
人工智能·算法·机器学习·计算机视觉
Jamence23 分钟前
多模态大语言模型arxiv论文略读(八十三)
论文阅读·人工智能·深度学习·语言模型·论文笔记
纪伊路上盛名在25 分钟前
LLM大语言模型系列1-token
字符编码·人工智能·语言模型·自然语言处理·token·文本处理
Johny_Zhao29 分钟前
HSRP、GLBP、VRRP、NSRP 协议对比与配置指南
网络·人工智能·网络安全·信息安全·云计算·cisco·huawei·系统运维·华三
深蓝易网1 小时前
打破传统仓库管理困局:WMS如何重构出入库全流程
大数据·运维·人工智能·重构·数据分析·制造
FF-Studio2 小时前
【硬核数学】2. AI如何“学习”?微积分揭秘模型优化的奥秘《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·深度学习·学习·机器学习·自然语言处理·微积分·高等数学
仙人掌_lz2 小时前
深入理解蒙特卡洛树搜索(MCTS):python从零实现
人工智能·python·算法·ai·强化学习·rl·mcts
追逐☞2 小时前
机器学习(14)——模型调参
人工智能·机器学习
犬余2 小时前
告别Spring AI!我的Java轻量AI框架实践(支持多模型接入|注解式MCP架构|附开源地址)
java·人工智能·spring