每日一题:跳跃游戏II

给定一个长度为 n0 索引 整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

复制代码
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是2。
从下标为 0 跳到下标为 1 的位置,跳1步,然后跳3步到达数组的最后一个位置。

示例 2:

复制代码
输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <=
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

分解题目:

  • 目标:求解跳到最后一个位置的最小跳跃数
  • 依赖于:存在一个位置能跳到最后一个位置(题目已经保证此项)
    跳到这个位置的最小跳跃数。
  • 如果用 i 来表示最后一次跳跃,i - 1表示的倒数第二次跳跃,很明显,求解 i 的最小跳跃数可以转换为求解 i - 1的最小跳跃数。

至此,可以用动态规划进行解决。

定义:dp[ i ]表示跳跃到第 i 个位置的最小跳跃数。dp[n - 1]即为所求,边界值dp[0] = 0。

对于第 i 个位置,可能有多个前置的位置可以跳跃到达,我们需要找到其中的最小值,即:

j from 0 to i
if(nums[j]+j>i)  dp[i]=min(dp[i],dp[j]+1); 

完整代码:

class Solution {
public:
    int jump(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n,n);
        dp[0] = 0;
        for(int i = 1;i < n;++i){
            for(int j = 0; j < i;++j){
                if(nums[j] + j >= i){
                    dp[i] = min(dp[i],dp[j] + 1);
                }
            } 
        }
        return dp[n-1];
    }
};

然而这里的动态规划反而引入了更多的重复计算。

如果换成贪心算法:

class Solution {
public:
    int jump(vector<int>& nums) {
        int jumps = 0;
        int end = 0;
        int farthest = 0;
        for (int i = 0; i < nums.size() - 1; i++) {
            farthest = max(farthest, nums[i] + i);
            if (i == end) {
                jumps++;
                end = farthest;
                if (end >= nums.size() - 1) {
                    break;
                }
            }
        }
    return jumps;
    }
};
  • jumps是跳跃的次数,end是当前的终点,farthest是当前点跳跃能够到达的最远点。
  • 遍历数组,除了最后一个元素,因为最后一个元素的位置不需要跳跃,自己就能到达自己。
  • 我们时刻维护从当前点到达的最远距离,当我们到达了当前终点,就把最远距离设置成终点,这里体现贪心的思想。
  • 同时,当到达了end时,也说明需要进行一次跳跃。

即:每次在上次能跳到的范围(i,end)内选择一个能跳的最远的位置(也就是能跳到farthest位置的点)作为下次的起跳点。

对于初学者,这看上去非常的反直觉,这是不是局部最优?为什么是全局最优?如果出现当前跳的最远,但是下下步跳得近了怎么办?

这里需要理解end的作用,如果把end抽象成一个分隔符,所谓跳跃过程就是在数组内插入分隔符的过程,使最终分出的子数组数量最小。

而fareset的作用是,保留上一个end到当前end这个区间范围内可以达到的最远值。

注意区间范围这个点。

在贪心算法中,每一步的end都是当前范围能到达的最远点,也即最大值farest,所以最终分出的间隔就会更少。

下面用一个具体图例做进一步解释,初始状态,进行第一次跳跃:

跳跃后在区间内遍历维护最远值farest:

这里有人可能会说,看起来像恰好1就跳到了较大值10。那如果我们把这里的1换成0会发生什么?

可以看到维护的farest,才是起到关键作用的值 。和nums[end]中的值并无全部关系。 这也是上面提到的,保留上一个end到当前end这个区间范围内可以达到的最远值。

图中箭头描述的是end变化的过程,真实的跳跃过程和end的变化过程数量相同,但是路径不一定相同。(每条end箭头仅对应一条跳跃,比如这里是从2跳到3跳到10。)

继续遍历:

只要理解了end表示间隔且和真实跳跃一一对应,farest表示一个区间内跳到的最远距离这两个概念,这里的贪心算法就很好理解了。

相关推荐
xqhoj40 分钟前
C++学习指南(七)——stack/queue/priority_queue
开发语言·c++
埃菲尔铁塔_CV算法1 小时前
双线性插值算法:原理、实现、优化及在图像处理和多领域中的广泛应用与发展趋势(二)
c++·人工智能·算法·机器学习·计算机视觉
叫我龙翔1 小时前
【算法日记】从零开始认识动态规划(一)
c++·算法·动态规划·代理模式
AC100AC1 小时前
[NOIP2007 提高组] 矩阵取数游戏
算法·游戏·矩阵
Pafey1 小时前
c++ 中的容器 vector、deque 和 list 的区别
开发语言·c++
深度混淆1 小时前
C#,图论与图算法,输出无向图“欧拉路径”的弗勒里(Fleury Algorithm)算法和源程序
算法·图论
大草原的小灰灰1 小时前
C++ STL之容器介绍(vector、list、set、map)
数据结构·c++·算法
小刘|2 小时前
数据结构的插入与删除
java·数据结构·算法
疯狂学习GIS2 小时前
互联网大中小厂实习面经:滴滴、美团、货拉拉、蔚来、信通院等
c++·python
w(゚Д゚)w吓洗宝宝了3 小时前
List详解 - 双向链表的操作
数据结构·c++·链表·list