深度学习之目标检测从入门到精通——xml转yolo格式

python 复制代码
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import glob


classes = ["crazing", "inclusion", "patches", "pitted_surface", "rolled-in_scale", "scratches"]

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_name):
    in_file = open('./ANNOTATIONS/'+image_name[:-3]+'xml')
    out_file = open('./LABELS/'+image_name[:-3]+'txt','w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            print(cls)
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

if __name__ == '__main__':
    for image_path in glob.glob("./IMAGES/*.jpg"):
        image_name = image_path.split('\\')[-1]
        #print(image_path)
        convert_annotation(image_name)
1. 定义目标类别
python 复制代码
classes = ["crazing", "inclusion", "patches", "pitted_surface", "rolled-in_scale", "scratches"]

这一行代码定义了感兴趣的类别列表,即那些我们希望在训练模型时识别的物体类别。

2. 坐标转换函数
python 复制代码
def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

convert 函数将传入的边界框坐标(xmin, xmax, ymin, ymax)转换为归一化的中心点坐标和宽高。这是因为大多数深度学习模型都使用归一化的坐标系统。

3. 注释转换函数
python 复制代码
def convert_annotation(image_name):
    in_file = open('./ANNOTATIONS/'+image_name[:-3]+'xml')
    out_file = open('./LABELS/'+image_name[:-3]+'txt','w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

这个函数处理一个图像的XML标注文件,解析图像中每个对象的坐标,使用convert函数转换坐标,并将结果写入新的文本文件中。

4. 处理所有图像文件
python 复制代码
if __name__ == '__main__':
    for image_path in glob.glob("./IMAGES/*.jpg"):
        image_name = image_path.split('\\')[-1]
        convert_annotation(image_name)
相关推荐
Kacey Huang43 分钟前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
漂亮_大男孩43 分钟前
深度学习|表示学习|卷积神经网络|局部链接是什么?|06
深度学习·学习·cnn
lly_csdn1232 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
TURING.DT3 小时前
模型部署:TF Serving 的使用
深度学习·tensorflow
励志去大厂的菜鸟5 小时前
系统相关类——java.lang.Math (三)(案例详细拆解小白友好)
java·服务器·开发语言·深度学习·学习方法
liuhui2445 小时前
Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归
pytorch·深度学习·回归
睡不着还睡不醒6 小时前
【深度学习】神经网络实战分类与回归任务
深度学习·神经网络·分类
编码浪子6 小时前
Transformer的编码机制
人工智能·深度学习·transformer
IE066 小时前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
m0_7431064611 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学