Transformer - TokenEmbedding、 PositionalEmbedding、 TemporalEmbedding

Transformer - TokenEmbedding、 PositionalEmbedding、 TemporalEmbedding

flyfish

在原始的Transformer中输入嵌入向量只有TokenEmbedding和PositionalEmbedding。

用在时间序列的处理中再加上temporal_embedding 。

可以根据实际情况是否选择PositionalEmbedding

例如Autoformer的输入嵌入向量就没有PositionalEmbedding。

Informer三者都有。
Transformer - Positional Encoding 位置编码 代码实现
torch.nn.Embedding原理

Positional Encoding 位置编码

把词转换成可以计算的向量

py 复制代码
import torch
import torch.nn as nn
import math

def compared_version(ver1, ver2):
    """
    :param ver1
    :param ver2
    :return: ver1< = >ver2 False/True
    """
    list1 = str(ver1).split(".")
    list2 = str(ver2).split(".")
    
    for i in range(len(list1)) if len(list1) < len(list2) else range(len(list2)):
        if int(list1[i]) == int(list2[i]):
            pass
        elif int(list1[i]) < int(list2[i]):
            return -1
        else:
            return 1
    
    if len(list1) == len(list2):
        return True
    elif len(list1) < len(list2):
        return False
    else:
        return True

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]


class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if compared_version(torch.__version__, '1.5.0') else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
                                   kernel_size=3, padding=padding, padding_mode='circular', bias=False)
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
        return x


class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()


class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        minute_size = 4
        hour_size = 24
        weekday_size = 7
        day_size = 32
        month_size = 13

        Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
        if freq == 't':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)

    def forward(self, x):
        x = x.long()

        minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:, :, 3])
        weekday_x = self.weekday_embed(x[:, :, 2])
        day_x = self.day_embed(x[:, :, 1])
        month_x = self.month_embed(x[:, :, 0])

        return hour_x + weekday_x + day_x + month_x + minute_x


class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {'h': 4, 't': 5, 's': 6, 'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
        d_inp = freq_map[freq]
        self.embed = nn.Linear(d_inp, d_model, bias=False)

    def forward(self, x):
        return self.embed(x)


class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = self.value_embedding(x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
        return self.dropout(x)


class DataEmbedding_wo_pos(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding_wo_pos, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
                                                    freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
            d_model=d_model, embed_type=embed_type, freq=freq)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = self.value_embedding(x) + self.temporal_embedding(x_mark)
        return self.dropout(x)
相关推荐
L-ololois2 分钟前
【AI产品】一键比较GPT-5、Claude 4、Gemini 2.5、Deepseek多chatbot
人工智能·gpt
2401_841495642 分钟前
【自然语言处理】生成式语言模型GPT复现详细技术方案
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer
Elastic 中国社区官方博客3 分钟前
如何使用 Ollama 在本地设置和运行 GPT-OSS
人工智能·gpt·elasticsearch·搜索引擎·ai·语言模型
FreeBuf_8 分钟前
PortGPT:研究人员如何教会AI自动回移植安全补丁
人工智能
不说别的就是很菜15 分钟前
【AI助手】从零构建文章抓取器 MCP(Node.js 版)
人工智能·node.js
GIS数据转换器20 分钟前
2025无人机在电力交通中的应用实践
运维·人工智能·物联网·安全·无人机·1024程序员节
Blossom.11832 分钟前
大模型在边缘计算中的部署挑战与优化策略
人工智能·python·算法·机器学习·边缘计算·pygame·tornado
HelloRevit1 小时前
机器学习、深度学习、大模型 是什么关系?
人工智能·深度学习·机器学习
共享笔记1 小时前
Adobe Photoshop Elements 2026 正式发布:AI 引擎让修图更简单!
人工智能·adobe·photoshop
芝士AI吃鱼1 小时前
我为什么做了 Cogniflow?一个开发者关于“信息流”的思考与实践
人工智能·后端·aigc