并查集(Union-Find)

并查集是一种数据结构,主要用于解决一些元素分组的问题。它支持两种操作:查找和合并。查找操作用于判断两个元素是否属于同一组,合并操作用于将两个元素所在的组进行合并。并查集可以用于解决一些经典的算法问题,如最小生成树、网络连通性等。

一、并查集的实现原理

并查集的基本思想是:每个元素都有一个父节点,如果两个元素的父节点相同,那么它们就属于同一个集合。初始时,每个元素都是一个独立的集合,其父节点就是自己。

  1. 查找操作:查找元素所在集合的代表元素(根节点)。从给定元素开始,沿着父节点链一直向上查找,直到找到根节点。在查找过程中,可以将路径上的所有元素的父节点都直接指向根节点,以优化后续查找操作。

  2. 合并操作:将两个元素所在的集合进行合并。首先分别查找两个元素所在的根节点,然后将其中一个根节点的父节点设置为另一个根节点。

二、代码实现:

cs 复制代码
#include <stdio.h>

// 定义并查集结构体
typedef struct {
    int parent; // 父节点
    int rank;   // 树的高度
} UnionFind;

// 初始化并查集
void initUnionFind(UnionFind *uf, int n) {
    for (int i = 0; i < n; i++) {
        uf[i].parent = i;
        uf[i].rank = 0;
    }
}

// 查找操作,返回元素的根节点
int find(UnionFind *uf, int x) {
    if (uf[x].parent != x) {
        uf[x].parent = find(uf, uf[x].parent); // 路径压缩
    }
    return uf[x].parent;
}

// 合并操作,将两个元素所在的集合进行合并
void unionSet(UnionFind *uf, int x, int y) {
    int rootX = find(uf, x);
    int rootY = find(uf, y);
    if (rootX == rootY) {
        return;
    }
    if (uf[rootX].rank > uf[rootY].rank) {
        uf[rootY].parent = rootX;
    } else if (uf[rootX].rank < uf[rootY].rank) {
        uf[rootX].parent = rootY;
    } else {
        uf[rootY].parent = rootX;
        uf[rootX].rank++;
    }
}

int main() {
    int n = 5;
    UnionFind uf[n];
    initUnionFind(uf, n);

    unionSet(uf, 0, 1);
    unionSet(uf, 2, 3);
    unionSet(uf, 3, 4);

    for (int i = 0; i < n; i++) {
        printf("Element %d: parent = %d, rank = %d
", i, uf[i].parent, uf[i].rank);
    }

    return 0;
}
相关推荐
嗷嗷哦润橘_6 小时前
从萝卜纸巾猫到桌游:“蒸蚌大开门”的设计平衡之旅
人工智能·算法·游戏·概率论·桌游
XH华6 小时前
数据结构第九章:树的学习(上)
数据结构·学习
TracyCoder1236 小时前
Java String:从内存模型到不可变设计
java·算法·string
我是大咖7 小时前
二维数组与数组指针
java·数据结构·算法
筵陌7 小时前
算法:动态规划
算法·动态规划
大江东去浪淘尽千古风流人物7 小时前
【DSP】xiBoxFilter_3x3_U8 dsp VS cmodel
linux·运维·人工智能·算法·vr
zhuqiyua7 小时前
【无标题】
算法
Xの哲學8 小时前
Linux Tasklet 深度剖析: 从设计思想到底层实现
linux·网络·算法·架构·边缘计算
Imxyk8 小时前
力扣:1553. 吃掉 N 个橘子的最少天数(记忆化搜索,Dijkstra解法)
算法
爱编码的傅同学8 小时前
【今日算法】Leetcode 581.最短无序连续子数组 和 42.接雨水
数据结构·算法·leetcode