GraspNet-1Billion 论文阅读

文章目录

GraspNet-1Billion

CVPR2020

上海交大
论文和数据集地址:https://graspnet.net/

总体

主要解决训练数据不足和抓取姿态表示形式不同,没有统一的评估方法;仿真数据和真实场景数据存在gap

本文主要贡献是提出一个大规模数据集,一个统一的评价指标,一个端到端的物体抓取姿态预测方法

数据集

深度相机与机械臂固定连接,控制机械臂沿固定轨迹运动,只需要第一帧的6D位姿,后续的帧通过标定好的相机参数进行传递。

抓取姿态标注流程:

a. 抓取点采样

b. 抓取生成:视角、平面旋转和抓取深度采样

c. 通过物体的6D姿态投影场景中得到抓取姿态

d 碰撞检测

评价指标

Precision@k:前k个抓取的精度

网络

输入:点云

输出:抓取姿态(相对于相机坐标系)

pointnet++:

最远点采样算法, 点云分类

Approach Network:

输出能否抓取和预先定义的接近向量数量

Operation Network:

圆柱区域变换

旋转和宽度:分类比回归效果更好

Tolerance Network

grasp affinity fields:增加扰动还是有效的

摘要

物体抓取在许多应用中都是至关重要的,也是一个具有挑战性的计算机视觉问题。然而,对于复杂的场景,目前的研究存在训练数据不足和缺乏评估基准的问题。在这项工作中,我们提供了一个具有统一评估系统的大规模抓取姿势检测数据集。我们的数据集包含97280个RGB-D图像,超过10亿个抓取姿势。同时,我们的评估系统通过分析计算直接报告抓取是否成功,这能够评估任何种类的抓取姿势,而无需详尽地标记真值。 此外,本文还提出了一种基于点云输入的端到端抓取姿态预测网络,通过解耦的方式学习机器人的接近方向和操作参数,并设计了一种新的抓取亲和度场来提高抓取鲁棒性。实验结果表明,本文的数据集和评估系统能够很好地与真实世界的实验结果相吻合,网络的性能达到了最先进的水平。 我们的数据集、源代码和模型可在www.graspnet.net上公开获取。

相关工作

基于深度学习的抓取预测算法

抓取数据集

点云深度学习

相关推荐
草莓熊Lotso12 分钟前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc
IT_陈寒22 分钟前
Vue 3性能优化实战:7个关键技巧让我的应用加载速度提升50%
前端·人工智能·后端
【赫兹威客】浩哥25 分钟前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
RPA机器人就用八爪鱼30 分钟前
RPA:企业数字化转型的高效自动化利器
人工智能
程序员-小李31 分钟前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
掘金安东尼36 分钟前
AI 生成代码,从 Copilot 到 Claude Code 的全景测评
人工智能
说私域42 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序
喜欢吃豆2 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
e6zzseo3 小时前
独立站的优势和劣势和运营技巧
大数据·人工智能
富唯智能4 小时前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人