GraspNet-1Billion 论文阅读

文章目录

GraspNet-1Billion

CVPR2020

上海交大
论文和数据集地址:https://graspnet.net/

总体

主要解决训练数据不足和抓取姿态表示形式不同,没有统一的评估方法;仿真数据和真实场景数据存在gap

本文主要贡献是提出一个大规模数据集,一个统一的评价指标,一个端到端的物体抓取姿态预测方法

数据集

深度相机与机械臂固定连接,控制机械臂沿固定轨迹运动,只需要第一帧的6D位姿,后续的帧通过标定好的相机参数进行传递。

抓取姿态标注流程:

a. 抓取点采样

b. 抓取生成:视角、平面旋转和抓取深度采样

c. 通过物体的6D姿态投影场景中得到抓取姿态

d 碰撞检测

评价指标

Precision@k:前k个抓取的精度

网络

输入:点云

输出:抓取姿态(相对于相机坐标系)

pointnet++:

最远点采样算法, 点云分类

Approach Network:

输出能否抓取和预先定义的接近向量数量

Operation Network:

圆柱区域变换

旋转和宽度:分类比回归效果更好

Tolerance Network

grasp affinity fields:增加扰动还是有效的

摘要

物体抓取在许多应用中都是至关重要的,也是一个具有挑战性的计算机视觉问题。然而,对于复杂的场景,目前的研究存在训练数据不足和缺乏评估基准的问题。在这项工作中,我们提供了一个具有统一评估系统的大规模抓取姿势检测数据集。我们的数据集包含97280个RGB-D图像,超过10亿个抓取姿势。同时,我们的评估系统通过分析计算直接报告抓取是否成功,这能够评估任何种类的抓取姿势,而无需详尽地标记真值。 此外,本文还提出了一种基于点云输入的端到端抓取姿态预测网络,通过解耦的方式学习机器人的接近方向和操作参数,并设计了一种新的抓取亲和度场来提高抓取鲁棒性。实验结果表明,本文的数据集和评估系统能够很好地与真实世界的实验结果相吻合,网络的性能达到了最先进的水平。 我们的数据集、源代码和模型可在www.graspnet.net上公开获取。

相关工作

基于深度学习的抓取预测算法

抓取数据集

点云深度学习

相关推荐
九尾狐ai13 小时前
从九尾狐AI企业培训案例拆解:传统企业的AI获客系统架构设计与实战效果分析
人工智能
Blossom.11813 小时前
AI Agent智能办公助手:从ChatGPT到真正“干活“的系统
人工智能·分布式·python·深度学习·神经网络·chatgpt·迁移学习
应用市场13 小时前
Adam优化器深度解析:从数学原理到PyTorch源码实
人工智能·pytorch·python
a努力。13 小时前
2026 AI 编程终极套装:Claude Code + Codex + Gemini CLI + Antigravity,四位一体实战指南!
java·开发语言·人工智能·分布式·python·面试
qwerasda12385213 小时前
基于cornernet_hourglass104的纸杯检测与识别模型训练与优化详解
人工智能·计算机视觉·目标跟踪
抠头专注python环境配置14 小时前
解决“No module named ‘tensorflow‘”报错:从导入失败到环境配置成功
人工智能·windows·python·tensorflow·neo4j
好奇龙猫14 小时前
【AI学习-comfyUI学习-三十六节-黑森林-融合+扩图工作流-各个部分学习】
人工智能·学习
卡尔AI工坊14 小时前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
:mnong14 小时前
通过手写识别数字可视化学习卷积神经网络原理
人工智能·学习·cnn
俊哥V15 小时前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai