GraspNet-1Billion 论文阅读

文章目录

GraspNet-1Billion

CVPR2020

上海交大
论文和数据集地址:https://graspnet.net/

总体

主要解决训练数据不足和抓取姿态表示形式不同,没有统一的评估方法;仿真数据和真实场景数据存在gap

本文主要贡献是提出一个大规模数据集,一个统一的评价指标,一个端到端的物体抓取姿态预测方法

数据集

深度相机与机械臂固定连接,控制机械臂沿固定轨迹运动,只需要第一帧的6D位姿,后续的帧通过标定好的相机参数进行传递。

抓取姿态标注流程:

a. 抓取点采样

b. 抓取生成:视角、平面旋转和抓取深度采样

c. 通过物体的6D姿态投影场景中得到抓取姿态

d 碰撞检测

评价指标

Precision@k:前k个抓取的精度

网络

输入:点云

输出:抓取姿态(相对于相机坐标系)

pointnet++:

最远点采样算法, 点云分类

Approach Network:

输出能否抓取和预先定义的接近向量数量

Operation Network:

圆柱区域变换

旋转和宽度:分类比回归效果更好

Tolerance Network

grasp affinity fields:增加扰动还是有效的

摘要

物体抓取在许多应用中都是至关重要的,也是一个具有挑战性的计算机视觉问题。然而,对于复杂的场景,目前的研究存在训练数据不足和缺乏评估基准的问题。在这项工作中,我们提供了一个具有统一评估系统的大规模抓取姿势检测数据集。我们的数据集包含97280个RGB-D图像,超过10亿个抓取姿势。同时,我们的评估系统通过分析计算直接报告抓取是否成功,这能够评估任何种类的抓取姿势,而无需详尽地标记真值。 此外,本文还提出了一种基于点云输入的端到端抓取姿态预测网络,通过解耦的方式学习机器人的接近方向和操作参数,并设计了一种新的抓取亲和度场来提高抓取鲁棒性。实验结果表明,本文的数据集和评估系统能够很好地与真实世界的实验结果相吻合,网络的性能达到了最先进的水平。 我们的数据集、源代码和模型可在www.graspnet.net上公开获取。

相关工作

基于深度学习的抓取预测算法

抓取数据集

点云深度学习

相关推荐
起名字什么的好难5 分钟前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda
18号房客12 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
百家方案14 分钟前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
云起无垠20 分钟前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
QQ_77813297439 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨1 小时前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
X_StarX1 小时前
数据可视化期末复习-简答题
计算机视觉·信息可视化·数据挖掘·数据分析·数据可视化·大学生·期末
公众号Codewar原创作者1 小时前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
阿勉要睡觉1 小时前
计算机图形学知识点汇总
计算机视觉
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习