GraspNet-1Billion 论文阅读

文章目录

GraspNet-1Billion

CVPR2020

上海交大
论文和数据集地址:https://graspnet.net/

总体

主要解决训练数据不足和抓取姿态表示形式不同,没有统一的评估方法;仿真数据和真实场景数据存在gap

本文主要贡献是提出一个大规模数据集,一个统一的评价指标,一个端到端的物体抓取姿态预测方法

数据集

深度相机与机械臂固定连接,控制机械臂沿固定轨迹运动,只需要第一帧的6D位姿,后续的帧通过标定好的相机参数进行传递。

抓取姿态标注流程:

a. 抓取点采样

b. 抓取生成:视角、平面旋转和抓取深度采样

c. 通过物体的6D姿态投影场景中得到抓取姿态

d 碰撞检测

评价指标

Precision@k:前k个抓取的精度

网络

输入:点云

输出:抓取姿态(相对于相机坐标系)

pointnet++:

最远点采样算法, 点云分类

Approach Network:

输出能否抓取和预先定义的接近向量数量

Operation Network:

圆柱区域变换

旋转和宽度:分类比回归效果更好

Tolerance Network

grasp affinity fields:增加扰动还是有效的

摘要

物体抓取在许多应用中都是至关重要的,也是一个具有挑战性的计算机视觉问题。然而,对于复杂的场景,目前的研究存在训练数据不足和缺乏评估基准的问题。在这项工作中,我们提供了一个具有统一评估系统的大规模抓取姿势检测数据集。我们的数据集包含97280个RGB-D图像,超过10亿个抓取姿势。同时,我们的评估系统通过分析计算直接报告抓取是否成功,这能够评估任何种类的抓取姿势,而无需详尽地标记真值。 此外,本文还提出了一种基于点云输入的端到端抓取姿态预测网络,通过解耦的方式学习机器人的接近方向和操作参数,并设计了一种新的抓取亲和度场来提高抓取鲁棒性。实验结果表明,本文的数据集和评估系统能够很好地与真实世界的实验结果相吻合,网络的性能达到了最先进的水平。 我们的数据集、源代码和模型可在www.graspnet.net上公开获取。

相关工作

基于深度学习的抓取预测算法

抓取数据集

点云深度学习

相关推荐
懷淰メ2 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹2 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55182 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora2 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大2 小时前
关于前馈神经网络
人工智能·深度学习·神经网络
2的n次方_2 小时前
从0到1打造专属数字人:魔珐星云SDK接入实战演示
人工智能·具身智能·魔珐星云
roman_日积跬步-终至千里2 小时前
【模式识别与机器学习】机器学习练习题集 - 答案与解析
人工智能·机器学习
爱思德学术3 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):KSEM 2026
人工智能·知识图谱·知识工程·知识科学
玖日大大3 小时前
英伟达 AI 芯片:架构演进与智能时代的算力基石
人工智能·架构
中国云报3 小时前
从单一算力到融合基础设施:中国电子云重构AI时代算力版图
人工智能·重构