基于Transformer深度学习的翻译模型(英->中)源码系统

第一步:Transformer介绍

Transformer是一种基于注意力机制的序列到序列模型,它在机器翻译任务中表现出色并逐渐成为自然语言处理领域的主流模型。Transformer模型的核心思想是使用自注意力机制(self-attention)来捕捉输入序列中各个位置的上下文关联。自注意力机制允许模型在编码和解码过程中对不同位置的信息进行加权,使得模型能够更好地理解上下文,并将重要的信息加权汇聚起来。通过多层的自注意力机制和前馈神经网络,Transformer模型能够学习到输入序列的表示,并生成与任务相关的输出。

相比于传统的循环神经网络(RNN)和卷积神经网络(CNN),Transformer模型具有以下优势:1)并行计算能力强,可以高效处理长序列;2)捕捉长距离依赖更加有效;3)模型结构简单且易于训练。注意力机制和Transformer模型的引入使得自然语言处理任务取得了重大进展,比如机器翻译、文本摘要、问答系统等,在这些任务中,Transformer模型已经成为了目前最优秀的模型之一。

第二步:Transformer网络结构

Transformer结构主要由序列输入、编码器(Encoder)、译码器(Decoder)、序列输出四个部分构成。如下图:

第三步:代码展示

python 复制代码
class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(Transformer, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        # encoder的结果作为decoder的memory参数传入,进行decode
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

第四步:运行

运行界面:

第五步:整个工程的内容(包括训练代码和数据)

代码的下载路径 (新窗口打开链接) 基于Transformer的翻译模型(英->中)源码系统

有问题可以私信或者留言,有问必答

相关推荐
Cheney82210 分钟前
华为Ai岗机考20250903完整真题
人工智能·华为
新智元16 分钟前
=COPILOT() 函数横空出世!AI 自动写公式效率起飞,网友:让 Excel 再次伟大
人工智能·openai
scx_link23 分钟前
Word2Vec词嵌入技术和动态词嵌入技术
人工智能·自然语言处理·word2vec
云梦谭25 分钟前
Cursor 编辑器:面向 AI 编程的新一代 IDE
ide·人工智能·编辑器
IT_陈寒34 分钟前
Redis性能提升50%的7个关键优化策略,90%开发者都不知道第5点!
前端·人工智能·后端
乐迪信息41 分钟前
乐迪信息:AI摄像机在智慧煤矿人员安全与行为识别中的技术应用
大数据·人工智能·算法·安全·视觉检测
AI人工智能+41 分钟前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测
咔咔一顿操作1 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
微三云-轩1 小时前
区块链:重构企业数字化的信任核心与创新动力
人工智能·小程序·区块链·生活·我店
君名余曰正则1 小时前
机器学习04——决策树(信息增益、信息增益率、ID3、C4.5、CART、剪枝、连续值缺失值处理)
人工智能·决策树·机器学习