基于Transformer深度学习的翻译模型(英->中)源码系统

第一步:Transformer介绍

Transformer是一种基于注意力机制的序列到序列模型,它在机器翻译任务中表现出色并逐渐成为自然语言处理领域的主流模型。Transformer模型的核心思想是使用自注意力机制(self-attention)来捕捉输入序列中各个位置的上下文关联。自注意力机制允许模型在编码和解码过程中对不同位置的信息进行加权,使得模型能够更好地理解上下文,并将重要的信息加权汇聚起来。通过多层的自注意力机制和前馈神经网络,Transformer模型能够学习到输入序列的表示,并生成与任务相关的输出。

相比于传统的循环神经网络(RNN)和卷积神经网络(CNN),Transformer模型具有以下优势:1)并行计算能力强,可以高效处理长序列;2)捕捉长距离依赖更加有效;3)模型结构简单且易于训练。注意力机制和Transformer模型的引入使得自然语言处理任务取得了重大进展,比如机器翻译、文本摘要、问答系统等,在这些任务中,Transformer模型已经成为了目前最优秀的模型之一。

第二步:Transformer网络结构

Transformer结构主要由序列输入、编码器(Encoder)、译码器(Decoder)、序列输出四个部分构成。如下图:

第三步:代码展示

python 复制代码
class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(Transformer, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        # encoder的结果作为decoder的memory参数传入,进行decode
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

第四步:运行

运行界面:

第五步:整个工程的内容(包括训练代码和数据)

代码的下载路径 (新窗口打开链接) 基于Transformer的翻译模型(英->中)源码系统

有问题可以私信或者留言,有问必答

相关推荐
带娃的IT创业者1 小时前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头1 小时前
iOS各个证书生成细节
人工智能·ios·app·aigc
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农4 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh4 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone4 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:5 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能5 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
代码猪猪傻瓜coding6 小时前
关于 形状信息提取的说明
人工智能·python·深度学习