机器学习之sklearn基础教程

Scikit-learn(简称sklearn)是一个广泛使用的机器学习库。

  1. **安装sklearn**:推荐使用Anaconda进行安装,以避免配置和环境问题。也可以直接通过pip命令安装:`pip install scikit-learn`。

  2. **数据集生成**:sklearn内置了一些常用的数据集,如Iris花卉数据集、房价数据集、泰坦尼克号生存预测数据集等。您可以通过以下代码导入这些数据集:

```python

import pandas as pd

import numpy as np

from sklearn import datasets

例如,导入Iris数据集

iris = datasets.load_iris()

```

  1. **探索和准备数据**:在使用机器学习模型之前,需要对数据进行探索和预处理。这包括数据清洗、特征选择、数据标准化等步骤。

  2. **选择模型**:根据问题是回归、分类、聚类还是降维,选择合适的模型。sklearn提供了多种算法,如线性回归、决策树、支持向量机、K-均值聚类等。

  3. **训练模型**:使用训练数据来训练选定的模型。这一步骤通常涉及到模型参数的调整和优化。

  4. **评估模型**:使用测试数据来评估模型的性能。sklearn提供了多种评估指标,如准确率、召回率、F1分数等。

  5. **应用模型**:将训练好的模型应用于新的数据进行预测或分类。

  6. **模型持久化**:可以将训练好的模型保存起来,以便在未来的项目中重复使用。

  7. **查阅官方文档**:sklearn的官方文档是学习和使用该库的重要资源。文档中详细介绍了各个模块和函数的用法,以及如何在实际问题中应用它们。

  8. **实践项目**:通过实际项目来应用所学知识,这是巩固学习成果的最佳方式。可以从简单的项目开始,逐步尝试更复杂的问题。

  9. **参与社区**:加入sklearn的社区,与其他用户交流心得,可以帮助您更快地解决问题并学习到最新的技术。

  10. **持续学习**:机器学习是一个快速发展的领域,持续学习新知识和技能对于保持竞争力至关重要。

相关推荐
AI视觉网奇8 小时前
sklearn 安装使用笔记
人工智能·算法·sklearn
正义的彬彬侠8 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
我就说好玩1 天前
2020年美国总统大选数据分析与模型预测
大数据·python·数据挖掘·数据分析·pandas·sklearn
镜花照无眠2 天前
sklearn红酒数据集分类器的构建和评估
python·sklearn
今天有没有吃饱饱3 天前
【深度学习】多分类任务评估指标sklearn和torchmetrics对比
pytorch·深度学习·分类·sklearn
pingu的生信备忘录4 天前
sklearn|机器学习:决策树(一)
决策树·机器学习·sklearn
zbdx不知名菜鸡6 天前
sklearn机器学习实战
人工智能·机器学习·sklearn
武子康6 天前
大数据-203 数据挖掘 机器学习理论 - 决策树 sklearn 剪枝参数 样本不均匀问题
大数据·人工智能·决策树·机器学习·数据挖掘·scikit-learn·sklearn
武子康6 天前
大数据-202 数据挖掘 机器学习理论 - 决策树 sklearn 绘制决策树 防止过拟合
大数据·人工智能·决策树·机器学习·数据挖掘·scikit-learn·sklearn
桂渊泉树7 天前
sklearn 分类变量转换
人工智能·分类·sklearn