【分布式通信】NPKit,NCCL的Profiling工具

NPKit介绍

NPKit (Networking Profiling Kit) is a profiling framework designed for popular collective communication libraries (CCLs), including Microsoft MSCCL, NVIDIA NCCL and AMD RCCL.

It enables users to insert customized profiling events into different CCL components, especially into giant GPU kernels.

These events are then automatically placed onto a unified timeline in Google Trace Event Format, which users can then leverage trace viewer to understand CCLs' workflow and performance.

以NCCL为例,如何使用?

Usage

  1. NCCL 2.17.1-1版本,将文件夹下的 npkit-for-nccl-2.17.1-1.diff 添加到你的nccl源文件中。

  2. NPKit只有在CPU和GPU没以后overlap的时候使用,所以 NPKIT_FLAGS 也要遵从这个规则。同时 npkit_launcher.sh里面的参数也要对应正确。

  3. nccl_testnpkit_runner.sh对应参数正确. 仅支持每个线程有1个GPU, 因此nccl_test运行参数记得是 -g 1

  4. 运行bash npkit_launcher.sh.

  5. 生成文件 npkit_event_trace.json ,可以用谷歌浏览器打开看。在浏览器那一栏输入chrome://tracing, 然后打开对应文件即可。

python 复制代码
import argparse
import os
import json

from queue import Queue

def parse_npkit_event_header(npkit_event_header_path):
    npkit_event_def = {'id_to_type': {}, 'type_to_id': {}}
    with open(npkit_event_header_path, 'r') as f:
        lines = [x.strip() for x in f.readlines() if len(x.strip()) != 0]
        line_idx = 0
        while line_idx < len(lines):
            if lines[line_idx].startswith('#define NPKIT_EVENT_'):
                fields = lines[line_idx].split()
                if len(fields) == 3:
                    event_type = fields[1]
                    event_id = int(fields[2], 0)
                    npkit_event_def['type_to_id'][event_type] = event_id
                    npkit_event_def['id_to_type'][event_id] = event_type
            line_idx += 1
    return npkit_event_def

def parse_gpu_clock_scale(gpu_clock_file_path):
    with open(gpu_clock_file_path, 'r') as f:
        freq_in_khz = f.read()
        return float(freq_in_khz) * 1e3 / 1e6

def parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path):
    with open(cpu_clock_num_file_path, 'r') as f:
        num = float(f.read())
    with open(cpu_clock_den_file_path, 'r') as f:
        den = float(f.read())
    return den / num / 1e6

def parse_gpu_event(event_bytes):
    return {
        'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
        'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
        'rsvd': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
        'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
    }

def parse_cpu_event(event_bytes):
    return {
        'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
        'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
        'slot': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
        'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
    }

def parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale):
    gpu_event_file_path = os.path.join(npkit_dump_dir, 'gpu_events_rank_%d_buf_%d' % (rank, buf_idx))
    raw_event_size = 16
    curr_cpu_base_time = None
    curr_gpu_base_time = None
    gpu_events = []
    event_type_to_seq = {}
    with open(gpu_event_file_path, 'rb') as f:
        raw_content = f.read()
        raw_content_size = len(raw_content)
        raw_content_idx = 0
        while raw_content_idx < raw_content_size:
            parsed_gpu_event = parse_gpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
            if npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_CPU':
                curr_cpu_base_time = parsed_gpu_event['timestamp'] / cpu_clock_scale
                curr_gpu_base_time = None
            elif npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_GPU':
                if curr_gpu_base_time is None:
                    curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
            else:
                if curr_gpu_base_time is None:
                    curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
                event_type = npkit_event_def['id_to_type'][parsed_gpu_event['id']]
                phase = 'B' if event_type.endswith('_ENTRY') else 'E'
                gpu_events.append({
                    'ph': phase,
                    'ts': curr_cpu_base_time + parsed_gpu_event['timestamp'] / gpu_clock_scale - curr_gpu_base_time,
                    'pid': rank,
                    'tid': buf_idx + 1
                })
                if phase == 'B':
                    if event_type not in event_type_to_seq:
                        event_type_to_seq[event_type] = 0
                    gpu_events[-1].update({
                        'name': event_type,
                        'cat': 'GPU',
                        'args': {
                            'rank': rank,
                            'buf_idx': buf_idx,
                            'seq': event_type_to_seq[event_type],
                            'rsvd_0': parsed_gpu_event['rsvd'],
                            'size_0': parsed_gpu_event['size']
                        }
                    })
                    event_type_to_seq[event_type] += 1
                else:
                    gpu_events[-1]['args'] = {'size': parsed_gpu_event['size'], 'rsvd': parsed_gpu_event['rsvd']}
                    delta_time = gpu_events[-1]['ts'] - gpu_events[-2]['ts']
                    gpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else gpu_events[-1]['args']['size'] / delta_time / 1e3
            raw_content_idx += raw_event_size
    return gpu_events

def parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale):
    cpu_event_file_path = os.path.join(npkit_dump_dir, 'cpu_events_rank_%d_channel_%d' % (rank, channel))
    raw_event_size = 16
    cpu_events = []
    event_type_to_seq = {}

    fiber_is_usable = []
    fiber_open_ts = []
    slot_to_fiber_id = {}
    channel_shift = 1000

    with open(cpu_event_file_path, 'rb') as f:
        raw_content = f.read()
        raw_content_size = len(raw_content)
        raw_content_idx = 0
        while raw_content_idx < raw_content_size:
            parsed_cpu_event = parse_cpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
            event_type = npkit_event_def['id_to_type'][parsed_cpu_event['id']]
            phase = 'B' if event_type.endswith('_ENTRY') else 'E'
            cpu_events.append({
                'ph': phase,
                'ts': parsed_cpu_event['timestamp'] / cpu_clock_scale,
                'pid': rank
            })
            slot = parsed_cpu_event['slot']
            if phase == 'B':
                # Open fiber event
                fiber_id = 0
                while fiber_id < len(fiber_is_usable):
                    if fiber_is_usable[fiber_id]:
                        break
                    fiber_id += 1
                if fiber_id == len(fiber_is_usable):
                    fiber_is_usable.append(True)
                    fiber_open_ts.append(0.0)
                slot_to_fiber_id[slot] = fiber_id
                fiber_open_ts[fiber_id] = cpu_events[-1]['ts']
                fiber_is_usable[fiber_id] = False

                if event_type not in event_type_to_seq:
                    event_type_to_seq[event_type] = 0
                cpu_events[-1].update({
                    'name': event_type,
                    'cat': 'CPU',
                    'args': {
                        'rank': rank,
                        'channel': channel,
                        'slot': parsed_cpu_event['slot'],
                        'seq': event_type_to_seq[event_type],
                        'size_0': parsed_cpu_event['size']
                    }
                })
                event_type_to_seq[event_type] += 1
            else:
                # Close fiber event
                fiber_id = slot_to_fiber_id[slot]
                slot_to_fiber_id.pop(slot)
                last_ts = fiber_open_ts[fiber_id]
                fiber_is_usable[fiber_id] = True

                delta_time = max(0.001, cpu_events[-1]['ts'] - last_ts)
                cpu_events[-1]['args'] = {'size': parsed_cpu_event['size']}
                cpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else cpu_events[-1]['args']['size'] / delta_time / 1e3

            cpu_events[-1]['tid'] = fiber_id + (channel + 1) * channel_shift

            raw_content_idx += raw_event_size
    return cpu_events

def convert_npkit_dump_to_trace(npkit_dump_dir, output_dir, npkit_event_def):
    files_in_dump_dir = next(os.walk(npkit_dump_dir))[2]
    gpu_event_files = [x for x in files_in_dump_dir if x.startswith('gpu_events_rank_')]
    cpu_event_files = [x for x in files_in_dump_dir if x.startswith('cpu_events_rank_')]

    ranks = list(set([int(x.split('_rank_')[1].split('_')[0]) for x in gpu_event_files]))
    buf_indices = list(set([int(x.split('_buf_')[1].split('_')[0]) for x in gpu_event_files]))
    channels = list(set([int(x.split('_channel_')[1].split('_')[0]) for x in cpu_event_files]))

    trace = {'traceEvents': []}

    for rank in ranks:
        cpu_clock_den_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_den_rank_%d' % rank)
        cpu_clock_num_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_num_rank_%d' % rank)
        cpu_clock_scale = parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path)

        gpu_clock_file_path = os.path.join(npkit_dump_dir, 'gpu_clock_rate_rank_%d' % rank)
        gpu_clock_scale = parse_gpu_clock_scale(gpu_clock_file_path)

        for buf_idx in buf_indices:
            gpu_events = parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale)
            trace['traceEvents'].extend(gpu_events)

        for channel in channels:
            cpu_events = parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale)
            trace['traceEvents'].extend(cpu_events)

    trace['traceEvents'].sort(key=lambda x : x['ts'])
    trace['displayTimeUnit'] = 'ns'

    os.makedirs(output_dir, exist_ok=True)
    with open(os.path.join(output_dir, 'npkit_event_trace.json'), 'w') as f:
        json.dump(trace, f)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--npkit_dump_dir', type=str, required=True, help='NPKit dump directory.')
    parser.add_argument('--npkit_event_header_path', type=str, required=True, help='Path to npkit_event.h.')
    parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory.')
    args = parser.parse_args()

    npkit_event_def = parse_npkit_event_header(args.npkit_event_header_path)
    convert_npkit_dump_to_trace(args.npkit_dump_dir, args.output_dir, npkit_event_def)
相关推荐
人工智能培训1 天前
大模型训练数据版权与知识产权问题的解决路径
人工智能·大模型·数字化转型·大模型算法·大模型应用工程师
无垠的广袤1 天前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板
Duang007_1 天前
【LeetCodeHot100 超详细Agent启发版本】字母异位词分组 (Group Anagrams)
开发语言·javascript·人工智能·python
phoenix@Capricornus1 天前
CNN中卷积输出尺寸的计算
人工智能·神经网络·cnn
创客匠人老蒋1 天前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
GJGCY1 天前
技术解析|中国智能体4类路径深度拆解,这类底座架构优势凸显
人工智能·经验分享·ai·agent·智能体·数字员工
犀思云1 天前
如何通过网络即服务平台实现企业数字化转型?
运维·网络·人工智能·系统架构·机器人
FIT2CLOUD飞致云1 天前
学习笔记丨MaxKB Office Word AI翻译加载项的实现
人工智能·ai·开源·智能体·maxkb
机器视觉的发动机1 天前
从实验室到工业现场:机器人视觉感知系统的边缘AI架构实战, 深度解析硬件选型、TensorRT量化加速与多传感器融合的极致优化方案
人工智能·机器人·视觉检测·人机交互·机器视觉
雾削木1 天前
AI文献提示词prompts
人工智能