【分布式通信】NPKit,NCCL的Profiling工具

NPKit介绍

NPKit (Networking Profiling Kit) is a profiling framework designed for popular collective communication libraries (CCLs), including Microsoft MSCCL, NVIDIA NCCL and AMD RCCL.

It enables users to insert customized profiling events into different CCL components, especially into giant GPU kernels.

These events are then automatically placed onto a unified timeline in Google Trace Event Format, which users can then leverage trace viewer to understand CCLs' workflow and performance.

以NCCL为例,如何使用?

Usage

  1. NCCL 2.17.1-1版本,将文件夹下的 npkit-for-nccl-2.17.1-1.diff 添加到你的nccl源文件中。

  2. NPKit只有在CPU和GPU没以后overlap的时候使用,所以 NPKIT_FLAGS 也要遵从这个规则。同时 npkit_launcher.sh里面的参数也要对应正确。

  3. nccl_testnpkit_runner.sh对应参数正确. 仅支持每个线程有1个GPU, 因此nccl_test运行参数记得是 -g 1

  4. 运行bash npkit_launcher.sh.

  5. 生成文件 npkit_event_trace.json ,可以用谷歌浏览器打开看。在浏览器那一栏输入chrome://tracing, 然后打开对应文件即可。

python 复制代码
import argparse
import os
import json

from queue import Queue

def parse_npkit_event_header(npkit_event_header_path):
    npkit_event_def = {'id_to_type': {}, 'type_to_id': {}}
    with open(npkit_event_header_path, 'r') as f:
        lines = [x.strip() for x in f.readlines() if len(x.strip()) != 0]
        line_idx = 0
        while line_idx < len(lines):
            if lines[line_idx].startswith('#define NPKIT_EVENT_'):
                fields = lines[line_idx].split()
                if len(fields) == 3:
                    event_type = fields[1]
                    event_id = int(fields[2], 0)
                    npkit_event_def['type_to_id'][event_type] = event_id
                    npkit_event_def['id_to_type'][event_id] = event_type
            line_idx += 1
    return npkit_event_def

def parse_gpu_clock_scale(gpu_clock_file_path):
    with open(gpu_clock_file_path, 'r') as f:
        freq_in_khz = f.read()
        return float(freq_in_khz) * 1e3 / 1e6

def parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path):
    with open(cpu_clock_num_file_path, 'r') as f:
        num = float(f.read())
    with open(cpu_clock_den_file_path, 'r') as f:
        den = float(f.read())
    return den / num / 1e6

def parse_gpu_event(event_bytes):
    return {
        'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
        'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
        'rsvd': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
        'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
    }

def parse_cpu_event(event_bytes):
    return {
        'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
        'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
        'slot': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
        'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
    }

def parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale):
    gpu_event_file_path = os.path.join(npkit_dump_dir, 'gpu_events_rank_%d_buf_%d' % (rank, buf_idx))
    raw_event_size = 16
    curr_cpu_base_time = None
    curr_gpu_base_time = None
    gpu_events = []
    event_type_to_seq = {}
    with open(gpu_event_file_path, 'rb') as f:
        raw_content = f.read()
        raw_content_size = len(raw_content)
        raw_content_idx = 0
        while raw_content_idx < raw_content_size:
            parsed_gpu_event = parse_gpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
            if npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_CPU':
                curr_cpu_base_time = parsed_gpu_event['timestamp'] / cpu_clock_scale
                curr_gpu_base_time = None
            elif npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_GPU':
                if curr_gpu_base_time is None:
                    curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
            else:
                if curr_gpu_base_time is None:
                    curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
                event_type = npkit_event_def['id_to_type'][parsed_gpu_event['id']]
                phase = 'B' if event_type.endswith('_ENTRY') else 'E'
                gpu_events.append({
                    'ph': phase,
                    'ts': curr_cpu_base_time + parsed_gpu_event['timestamp'] / gpu_clock_scale - curr_gpu_base_time,
                    'pid': rank,
                    'tid': buf_idx + 1
                })
                if phase == 'B':
                    if event_type not in event_type_to_seq:
                        event_type_to_seq[event_type] = 0
                    gpu_events[-1].update({
                        'name': event_type,
                        'cat': 'GPU',
                        'args': {
                            'rank': rank,
                            'buf_idx': buf_idx,
                            'seq': event_type_to_seq[event_type],
                            'rsvd_0': parsed_gpu_event['rsvd'],
                            'size_0': parsed_gpu_event['size']
                        }
                    })
                    event_type_to_seq[event_type] += 1
                else:
                    gpu_events[-1]['args'] = {'size': parsed_gpu_event['size'], 'rsvd': parsed_gpu_event['rsvd']}
                    delta_time = gpu_events[-1]['ts'] - gpu_events[-2]['ts']
                    gpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else gpu_events[-1]['args']['size'] / delta_time / 1e3
            raw_content_idx += raw_event_size
    return gpu_events

def parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale):
    cpu_event_file_path = os.path.join(npkit_dump_dir, 'cpu_events_rank_%d_channel_%d' % (rank, channel))
    raw_event_size = 16
    cpu_events = []
    event_type_to_seq = {}

    fiber_is_usable = []
    fiber_open_ts = []
    slot_to_fiber_id = {}
    channel_shift = 1000

    with open(cpu_event_file_path, 'rb') as f:
        raw_content = f.read()
        raw_content_size = len(raw_content)
        raw_content_idx = 0
        while raw_content_idx < raw_content_size:
            parsed_cpu_event = parse_cpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
            event_type = npkit_event_def['id_to_type'][parsed_cpu_event['id']]
            phase = 'B' if event_type.endswith('_ENTRY') else 'E'
            cpu_events.append({
                'ph': phase,
                'ts': parsed_cpu_event['timestamp'] / cpu_clock_scale,
                'pid': rank
            })
            slot = parsed_cpu_event['slot']
            if phase == 'B':
                # Open fiber event
                fiber_id = 0
                while fiber_id < len(fiber_is_usable):
                    if fiber_is_usable[fiber_id]:
                        break
                    fiber_id += 1
                if fiber_id == len(fiber_is_usable):
                    fiber_is_usable.append(True)
                    fiber_open_ts.append(0.0)
                slot_to_fiber_id[slot] = fiber_id
                fiber_open_ts[fiber_id] = cpu_events[-1]['ts']
                fiber_is_usable[fiber_id] = False

                if event_type not in event_type_to_seq:
                    event_type_to_seq[event_type] = 0
                cpu_events[-1].update({
                    'name': event_type,
                    'cat': 'CPU',
                    'args': {
                        'rank': rank,
                        'channel': channel,
                        'slot': parsed_cpu_event['slot'],
                        'seq': event_type_to_seq[event_type],
                        'size_0': parsed_cpu_event['size']
                    }
                })
                event_type_to_seq[event_type] += 1
            else:
                # Close fiber event
                fiber_id = slot_to_fiber_id[slot]
                slot_to_fiber_id.pop(slot)
                last_ts = fiber_open_ts[fiber_id]
                fiber_is_usable[fiber_id] = True

                delta_time = max(0.001, cpu_events[-1]['ts'] - last_ts)
                cpu_events[-1]['args'] = {'size': parsed_cpu_event['size']}
                cpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else cpu_events[-1]['args']['size'] / delta_time / 1e3

            cpu_events[-1]['tid'] = fiber_id + (channel + 1) * channel_shift

            raw_content_idx += raw_event_size
    return cpu_events

def convert_npkit_dump_to_trace(npkit_dump_dir, output_dir, npkit_event_def):
    files_in_dump_dir = next(os.walk(npkit_dump_dir))[2]
    gpu_event_files = [x for x in files_in_dump_dir if x.startswith('gpu_events_rank_')]
    cpu_event_files = [x for x in files_in_dump_dir if x.startswith('cpu_events_rank_')]

    ranks = list(set([int(x.split('_rank_')[1].split('_')[0]) for x in gpu_event_files]))
    buf_indices = list(set([int(x.split('_buf_')[1].split('_')[0]) for x in gpu_event_files]))
    channels = list(set([int(x.split('_channel_')[1].split('_')[0]) for x in cpu_event_files]))

    trace = {'traceEvents': []}

    for rank in ranks:
        cpu_clock_den_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_den_rank_%d' % rank)
        cpu_clock_num_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_num_rank_%d' % rank)
        cpu_clock_scale = parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path)

        gpu_clock_file_path = os.path.join(npkit_dump_dir, 'gpu_clock_rate_rank_%d' % rank)
        gpu_clock_scale = parse_gpu_clock_scale(gpu_clock_file_path)

        for buf_idx in buf_indices:
            gpu_events = parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale)
            trace['traceEvents'].extend(gpu_events)

        for channel in channels:
            cpu_events = parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale)
            trace['traceEvents'].extend(cpu_events)

    trace['traceEvents'].sort(key=lambda x : x['ts'])
    trace['displayTimeUnit'] = 'ns'

    os.makedirs(output_dir, exist_ok=True)
    with open(os.path.join(output_dir, 'npkit_event_trace.json'), 'w') as f:
        json.dump(trace, f)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--npkit_dump_dir', type=str, required=True, help='NPKit dump directory.')
    parser.add_argument('--npkit_event_header_path', type=str, required=True, help='Path to npkit_event.h.')
    parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory.')
    args = parser.parse_args()

    npkit_event_def = parse_npkit_event_header(args.npkit_event_header_path)
    convert_npkit_dump_to_trace(args.npkit_dump_dir, args.output_dir, npkit_event_def)
相关推荐
张彦峰ZYF15 分钟前
走出 Demo,走向现实:DeepSeek-VL 的多模态工程路线图
人工智能
Johny_Zhao35 分钟前
Vmware workstation安装部署微软SCCM服务系统
网络·人工智能·python·sql·网络安全·信息安全·微软·云计算·shell·系统运维·sccm
动感光博1 小时前
Unity(URP渲染管线)的后处理、动画制作、虚拟相机(Virtual Camera)
开发语言·人工智能·计算机视觉·unity·c#·游戏引擎
IT古董1 小时前
【漫话机器学习系列】259.神经网络参数的初始化(Initialization Of Neural Network Parameters)
人工智能·神经网络·机器学习
tyatyatya1 小时前
神经网络在MATLAB中是如何实现的?
人工智能·神经网络·matlab
Jackson@ML2 小时前
一分钟了解大语言模型(LLMs)
人工智能·语言模型·自然语言处理
让学习成为一种生活方式2 小时前
大麦(Hordeum vulgare)中 BAHD 超家族酰基转移酶-文献精读129
人工智能
思茂信息2 小时前
CST软件对OPERA&CST软件联合仿真汽车无线充电站对人体的影响
c语言·开发语言·人工智能·matlab·汽车·软件构建
墨绿色的摆渡人2 小时前
pytorch小记(二十):深入解析 PyTorch 的 `torch.randn_like`:原理、参数与实战示例
人工智能·pytorch·python
lqjun08272 小时前
Pytorch实现常用代码笔记
人工智能·pytorch·笔记