做大模型产品,如何设计prompt?

做GenAI产品,除了要设计好的AI任务流程,合理的拆分业务以外,最重要的就是写好prompt,管理好prompt,持续迭代prompt。

prompt一般有两种形式:结构化prompt对话式prompt

结构化prompt的优点是通过规范的结构把任务介绍得很清楚,缺点就是往往很长,比较复杂。而对话式prompt更加简单,更符合日常的说话习惯,缺点是难以一句话描述清楚任务,最后得不到满意的结果,需要进行多轮对话才能获得最终结果。

两种prompt都有自己的适合场景,结构化的prompt更合适用来内置到产品工作流中,由开发者编写、维护,非对话类AI产品基本采用的就是这种复杂的prompt形式。对话式prompt就合适用在chatbot场景,直接由用户发出。

关于对话式prompt,关键是引导用户持续对话下去,很多时候,用户其实是不知道怎么提问的,我们可以通过搜索query推荐策略来给用户推荐话题相关的prompt,当然也可以把上下文丢给大模型并让模型针对上面的对话提出x个最相关的问题。

如果大家对推荐query感兴趣(评论留言),后面我将单独写一篇文章,本文主要关注非对话类(即"任务型")AI产品的设计,因此下面着重介绍下结构化prompt的设计思路。

1、结构化prompt

结构化prompt一般可以包括以下几个部分:

  • 定义角色
  • 介绍背景和输入的数据格式
  • 提出任务(可能会有多个任务)
  • 执行所有任务的步骤
  • 定义输出格式
  • 给定输出例子

这是一个结构化prompt的大概框架,这个框架可以采用markdown来描述。结构化prompt有两个很关键的地方需要注意,第一个是多任务,第二个就是输出格式的控制。

  • 关于多任务:首先,一定要明白在一个prompt里面内置多个任务,绝对不是一个好的选择,除非你有强烈的这样做的理由。但是选择做多任务可以「降低成本」,我相信对大多数独立开发者来说,都是重要的事情。
  • 如果在一个prompt同时执行「总结章节」,「抽取highlight」,「抽取关键字」等任务,就是为了让这些事情只需要输入一遍transcript就可以同时获取这些结果。如果单独执行每一个任务,那就需要把相同的transcript数据输入LLM多次,这将会多消耗数倍的成本。
  • 但一定要明白,多任务无疑增加了LLM执行的复杂度,这并不符合「尽量给LLM简单、明确、较小的任务的原则」。经过测试,多任务执行的结果质量赶单任务是有差距的,这就需要不断的打磨和权衡吧。
  • 关于输出格式控制:由于LLM总结结果是需要在任务型产品页面上进行结构化展示,并不是chatbot那样直接输出给用户,所以这类产品对LLM的输出格式就需要严格定义,并且希望LLM能够稳定且正确的输出。对于程序员来说,一般会选择json作为输出。但考虑到LLM的输出可能不稳定,且偶尔输出的json可能是非法的,这种情况下只能重试LLM,导致浪费token,增加成本。因而,建议选择LLM的输出格式为markdown,并通过以下几点来控制输出,减少重试LLM。
  1. prompt中提供输出示例
  2. 输出格式使用简单的markdown语法,自己解析markdown
  3. 借助编程做好容错处理

2、prompt管理

我们采用模板技术来定义prompt,然后通过模板变量去控制prompt,比如多语言等。使用模板来管理prompt后,就不需要为不同的情况都写一份prompt,只需要抽象好prompt模板+模板变量即可。

3、prompt测试

可以在大模型第一梯队或者专门的prompt playground上测试:

在调试prompt的时候,温度(temperature)应该是最常用的一个选项。也就是设置不同的温度,可能会得到不同的效果。像总结文章这种需求,需要基于原文的事实,那最好是温度设置低一些,倾向0都可以。温度设置得很高,大于1,LLM就会更大概率做自由发挥了。还是看自己的业务场景,以及更多的测试。

4、prompt迭代

在开发AI产品的时候,不要纠结一步到位写好prompt,还是需要将重心放到完成整个业务流程和功能上。prompt的编写也和代码一样,需要持续的迭代、优化。所以,需要好的prompt管理方式,方便持续的迭代、测试改进。

虽然对prompt不断地打磨,调试,并不是一件roi很高的事情,但有时候你又不得不做。

5、实战示例

比如我想做一个文章阅读助手的任务型产品,你可以参考上述结构化prompt的要素来设计prompt模版:

你是一个文章阅读助手,我会给你一个文章链接,请根据以下步骤输出markdown格式的内容:

一、我们一步一步思考,阅读我提供的内容,并做出以下操作:

1、提取文章的元数据

  • 标题:

  • 作者:

  • 标签:(阅读文章内容后给文章打上标签,标签通常是领域、学科或专有名词)

2、一句话总结这篇文章;

3、总结文章内容并写成摘要;

二、精读文章内容,并作出以下操作:

1、请详细地列举文章的大纲,并叙述大纲中每一部分的内容,

2、总结文章的结论;

3、列举读这篇文章,我可以学到哪些知识?

三、好的,接着

1、提取文章中的金句;

2、这篇文章里,作者有哪些独到的见解?

为你提供的文章链接为:{url}

由于国内月之暗面的kimi模型在阅读长文本上表现很好,我在kimi chat上测试了一下,能够比较好满足我们结构化的要求(当然如果输出的格式不满足我们的要求,在prompt设计时可以把预期的示例加上)。

最后,必须强调下,做任务型AI产品最好选择那些在chat bot中很难满足的场景或工作流,否则一旦用户掌握了在chat中使用prompt的方法,任务型AI产品的价值很快就被对话产品覆盖掉

相关推荐
倔强青铜三3 分钟前
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
人工智能·python·面试
李元豪6 分钟前
我有免费的大模型能力,文本转语音,语音转文本,文本生成视频的能力。如何组合这些资源能力?生成一个有价值的可以挣钱的项目为社会做贡献?
人工智能
寻觅神话067 分钟前
Coze扣子 - AI生成数字人口播视频
人工智能
牛奶还是纯的好24 分钟前
目标检测标注格式
人工智能·目标检测·目标跟踪
摘取一颗天上星️37 分钟前
端到端记忆网络 vs 神经图灵机:外部记忆的两种哲学之争
网络·人工智能·深度学习·机器学习·lstm·外部记忆
vlln44 分钟前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer
CoderJia程序员甲1 小时前
awesome-llm-apps 项目带你探索语言模型的无限可能
人工智能·ai·语言模型·自然语言处理
我不是小upper1 小时前
PDF转Markdown基准测试
图像处理·人工智能·markdown·marker·docling
家庭云计算专家1 小时前
ONLYOFFICE 的AI技巧-1.集成OCR、文本转图像、电子表格集成等新功能
人工智能·ocr·onlyoffice·协作空间
倔强青铜三2 小时前
Python相对导入的终极翻车现场:为啥你的代码总报错?
人工智能·python·面试