NLP大模型的训练

NLP模型的训练主要分成两步:

1.先进行通用任务的训练;无监督的样本是无穷无尽的;

这里列举两种:MLM和NSP,NSP由于在某些论文中被证明是无效的,所以用的少;

MLM:

接下来会在特定任务上进行finetune==>supervised finetuning (SFT)

相关推荐
杜子不疼.4 分钟前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人5 分钟前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能
艾莉丝努力练剑6 分钟前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
芷栀夏9 分钟前
从 CANN 开源项目看现代爬虫架构的演进:轻量、智能与统一
人工智能·爬虫·架构·开源·cann
梦帮科技19 分钟前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
User_芊芊君子22 分钟前
【分布式训练】CANN SHMEM跨设备内存通信库:构建高效多机多卡训练的关键组件
分布式·深度学习·神经网络·wpf
永远都不秃头的程序员(互关)26 分钟前
CANN模型量化赋能AIGC:深度压缩,释放生成式AI的极致性能与资源潜力
人工智能·aigc
爱华晨宇29 分钟前
CANN Auto-Tune赋能AIGC:智能性能炼金术,解锁生成式AI极致效率
人工智能·aigc
聆风吟º32 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
觉醒大王33 分钟前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法