python代码实现支持向量机对鸢尾花分类

1、导入支持向量机模型,划分数据集

python 复制代码
from sklearn import datasets
from sklearn import svm

iris=datasets.load_iris()
iris_x=iris.data
iris_y=iris.target
indices = np.random.permutation(len(iris_x))
iris_x_train = iris_x[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]
iris_x_test = iris_x[indices[-10:]]
iris_y_test = iris_y[indices[-10:]]

2、训练模型

python 复制代码
clf = svm.SVC(kernel = 'linear')
clf.fit(iris_x_train,iris_y_train)

线性核函数 ('linear'):

应用场景:适用于线性可分的情况,当数据集在特征空间中是线性可分布的时候,线性核函数是首选。

示例应用:文本分类、简单图像分类等。
多项式核函数 ('poly'):

应用场景:适用于非线性但仍然具有明显分界的情况,可通过调整多项式的次数来控制模型的复杂度。

示例应用:人脸识别、手写数字识别等。 径向基函数
(RBF) 核函数 ('rbf'):

应用场景:适用于非线性且数据分布复杂的情况,RBF 核函数具有很强的拟合能力,能够处理各种形状的数据分布。

示例应用:生物信息学、金融风险管理等。
Sigmoid 核函数 ('sigmoid'):

应用场景:适用于二元分类问题,但一般情况下不推荐使用,因为它对模型的影响较小。

示例应用:简单的二分类问题。

3、为测试数据集分类

python 复制代码
iris_y_predict = clf.predict(iris_x_test)
score=clf.score(iris_x_test,iris_y_test,sample_weight=None)

print('iris_y_predict = ')
print(iris_y_predict)
print('iris_y_test = ')
print(iris_y_test)
print('Accuracy:',score)
python 复制代码
iris_y_predict = 
[1 2 1 0 0 0 2 1 2 0]
iris_y_test = 
[1 1 1 0 0 0 2 1 2 0]
Accuracy: 0.9

算法的优点

1、有严格的数学理论支持,可解释性强。 SVM 所获得的结果是全局最优解而不是局部最优解,很多算法为了降低复杂性只给出了一个局部最优解,比如我们前面提到的 "决策树算法",而 SVM 的最优化求解所获得的一定是全局最优解。

2、算法的鲁棒性很好。 由于计算主要依赖于关键的支持向量,所以只要支持向量没有变化,样本发生一些变化对算法没有什么影响。
算法的缺点

1、训练所需要的资源很大。 由于运算量与存储量都很高,SVM 训练的开销也是巨大的,因此支持向量机只适合比较小的样本量,比如几千条数据,当样本量太大时训练资源开销过大。

2、只能处理二分类问题。 经典的 SVM 算法十分简洁,正如上面的例子一样,画一条线分割两个类别,如果需要处理多类别的分类问题,需要使用一些组合手段。

3、模型预测时,预测时间与支持向量的个数成正比。 当支持向量的数量较大时,预测计算复杂度较

高。因此支持向量机目前只适合小批量样本的任务,无法适应百万甚至上亿样本的任务。

相关推荐
java1234_小锋2 分钟前
[免费]基于Python的深度学习豆瓣电影数据可视化+情感分析推荐系统(Flask+Vue+LSTM+scrapy)【论文+源码+SQL脚本】
python·信息可视化·flask·电影数据可视化
PieroPc1 小时前
一个基于Python Streamlit sqlite3 的销售单管理系统,提供商品管理、客户管理、销售单管理及打印,和应收对账单等功能
python·oracle·sqlite·streamlit
月下倩影时1 小时前
视觉进阶篇—— PyTorch 安装
人工智能·pytorch·python
Valueyou242 小时前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
孤狼warrior2 小时前
目前最新同花顺金融股市数据爬取 JS逆向+node.js补浏览器环境
javascript·爬虫·python·金融·node.js
蒋星熠2 小时前
全栈开发实战指南:从架构设计到部署运维
运维·c++·python·系统架构·node.js·devops·c5全栈
程序员爱钓鱼2 小时前
Python 编程实战 · 实用工具与库 — Flask 基础入门
后端·python·面试
程序员爱钓鱼2 小时前
Python编程实战 - Python实用工具与库 - 文件批量处理脚本
后端·python·面试
鹿衔`4 小时前
Flask入门
后端·python·flask
一晌小贪欢9 小时前
【Python数据分析】数据分析与可视化
开发语言·python·数据分析·数据可视化·数据清洗