计算机视觉 | 交通信号灯状态的检测和识别

Hi,大家好,我是半亩花海。本项目旨在使用计算机视觉技术检测交通信号灯的状态,主要针对红色绿色信号灯的识别。通过分析输入图像中的像素颜色信息,利用OpenCV库实现对信号灯状态的检测和识别。


目录

一、项目背景

二、项目功能

三、代码拆解

[1. 导入所需的库](#1. 导入所需的库)

[2. 读取输入图像](#2. 读取输入图像)

[3. 定义颜色阈值范围](#3. 定义颜色阈值范围)

[4. 转换颜色空间](#4. 转换颜色空间)

[5. 创建颜色掩膜](#5. 创建颜色掩膜)

[6. 查找轮廓](#6. 查找轮廓)

[7. 检测红色信号灯](#7. 检测红色信号灯)

[8. 检测绿色信号灯](#8. 检测绿色信号灯)

[9. 显示结果](#9. 显示结果)

四、结果展示

五、完整代码

六、总结


一、项目背景

随着交通系统的发展,交通信号灯在道路安全和交通管制中扮演着至关重要的角色。传统的信号灯控制需要人工操作,而基于计算机视觉的自动检测系统能够提高交通信号灯的检测效率和准确性,为交通管理带来更多可能性。


二、项目功能

本项目旨在利用计算机视觉技术检测交通信号灯的状态,具体功能包括:

  • 识别输入图像中的红色信号灯和绿色信号灯。
  • 在图像上标记出识别到的信号灯区域,并添加相应的文字标签。

三、代码拆解

1. 导入所需的库

导入OpenCV(cv2)和NumPy库。(使用 pip 安装 opencv-python 和 numpy 库)

python 复制代码
import cv2
import numpy as np

2. 读取输入图像

使用 OpenCV 的imread()函数读取输入图像,其中输入图像包含交通信号灯的场景。

python 复制代码
img = cv2.imread("light1.png")

3. 定义颜色阈值范围

通过指定红色和绿色的 HSV(色相、饱和度、亮度)值范围,使用 NumPy 库创建相应的颜色阈值范围。

python 复制代码
minRed = np.array([0, 127, 128])  
maxRed = np.array([10, 255, 255])
minGreen = np.array([50, 100, 20])
maxGreen = np.array([90, 255, 200])

4. 转换颜色空间

将输入图像从 BGR 颜色空间转换为 HSV 颜色空间,以便更好地识别颜色。

python 复制代码
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

5. 创建颜色掩膜

利用颜色阈值范围,使用 OpenCV 的inRange()函数创建红色和绿色的掩膜。

python 复制代码
mask_red = cv2.inRange(img_hsv, minRed, maxRed)  
mask_green = cv2.inRange(img_hsv, minGreen, maxGreen)

6. 查找轮廓

利用 OpenCV 的findContours()函数找到掩膜中的轮廓。

python 复制代码
contours1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  
contours2, hierarchy2 = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

7. 检测红色信号灯

遍历 红色掩膜中的轮廓,使用boundingRect()函数确定轮廓的边界框,并根据框的大小判断是否为有效的信号灯区域,最后在输入图像上绘制相应的矩形框和文字标签。

python 复制代码
for cnt in contours1:
    (x, y, w, h) = cv2.boundingRect(cnt)
    if w * h < 20 * 20:  
        continue
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 2)  
    cv2.putText(img, 'red_light', (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

8. 检测绿色信号灯

同样,遍历绿色掩膜中的轮廓,进行边界框的绘制和标签添加。

python 复制代码
for cnt in contours2:
    (x, y, w, h) = cv2.boundingRect(cnt)
    if w * h < 20 * 20:  
        continue
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)  
    cv2.putText(img, 'green_light', (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

9. 显示结果

利用OpenCV的imshow()函数显示标记后的图像,并通过waitKey()destroyAllWindows()函数控制图像显示窗口的关闭。

python 复制代码
cv2.imshow('res', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、结果展示


五、完整代码

python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@Project : TrafficLights
@File    : test_image.py
@IDE     : PyCharm
@Author  : 半亩花海
@Date    : 2024/04/20 21:45
"""
import cv2
import numpy as np

img = cv2.imread("light1.png")

# 指定红色值的范围
minRed = np.array([0, 127, 128])  # 红色阈值下界
maxRed = np.array([10, 255, 255])  # 红色阈值上界
# 指定绿色值的范围
minGreen = np.array([50, 100, 20])
maxGreen = np.array([90, 255, 200])
# BGR -> HSV颜色空间
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 确定目标区域
mask_red = cv2.inRange(img_hsv, minRed, maxRed)  # 过滤出红色部分,获得红色的掩膜
mask_green = cv2.inRange(img_hsv, minGreen, maxGreen)  # 获得绿色部分掩膜

# 查找轮廓
contours1, hierarchy1 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 轮廓检测 红灯
contours2, hierarchy2 = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 轮廓检测 绿灯

# 检测红灯
for cnt in contours1:
    (x, y, w, h) = cv2.boundingRect(cnt)  # 该函数返回矩阵四个点
    if w * h < 20 * 20:  # 忽略20*20的框
        continue
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 2)  # 将检测到的颜色框起来
    cv2.putText(img, 'red_light', (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# 检测绿灯
for cnt in contours2:
    (x, y, w, h) = cv2.boundingRect(cnt)  # 该函数返回矩阵四个点
    if w * h < 20 * 20:  # 忽略20*20的框
        continue
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)  # 将检测到的颜色框起来
    cv2.putText(img, 'green_light', (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

cv2.imshow('res', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

六、总结

注意事项

  • 确保输入的图像具有足够的清晰度和对比度,以便准确识别红色和绿色信号灯。
  • 可根据实际场景调整代码中的颜色阈值范围以获得更好的检测效果。

通过本项目,可以利用计算机视觉技术实现交通信号灯的自动检测,提高交通管理的效率和准确性。通过调整颜色阈值范围轮廓检测参数,可以适应不同场景下的交通信号灯检测需求。

相关推荐
文心快码 Baidu Comate9 分钟前
Comate Spec模式实测:让AI编程更精准可靠
人工智能·ai编程·文心快码·ai编程助手
疾风sxp9 分钟前
nl2sql技术实现自动sql生成
人工智能·word2vec
阿星AI工作室12 分钟前
让gemini3做的网页拥有支付功能,访客变付费用户!附提示词
人工智能
LaughingZhu24 分钟前
Product Hunt 每日热榜 | 2025-12-10
人工智能·经验分享·深度学习·神经网络·产品运营
老蒋新思维27 分钟前
创客匠人 2025 万人峰会核心:AI 驱动知识产品变现革新
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
音沐mu.28 分钟前
【34】犬类品种数据集(有v5/v8模型)/YOLO犬类品种检测
人工智能·yolo·目标检测·犬类品种数据集·犬类品种检测
Want59529 分钟前
Vibe Coding实战案例:利用Qoder打造个人知识库AI助手,并上线魔搭创空间
人工智能·aigc
多则惑少则明35 分钟前
AI测试、大模型测试(七)Java主流大模型框架技术
人工智能·ai测试·ai大模型测试
xinyu_Jina36 分钟前
人像精灵 AI 智能相馆:特征解耦与条件生成对抗网络(cGANs)在人像重构中的应用
人工智能·生成对抗网络·重构
木卫二号Coding38 分钟前
第五十七篇-ComfyUI+V100-32G+安装SD1.5
人工智能