【Spring AI】08. 输出解析器

文章目录

Output Parsers

OutputParser接口允许您获取结构化输出,例如将输出映射到 Java 类或从 AI 模型的基于字符串的输出中获取值数组。

您可以将其类比为 Spring JDBC 概念中的RowMapper或ResultSetExtractor。开发人员希望快速将 AI 模型的结果转换为可以传递给应用程序中其他函数和方法的数据类型。OutputParser有助于实现这一目标。

API 概述


本节提供了OutputParser接口的指南。

OutputParser

这里是 OutputParser 接口定义

java 复制代码
public interface OutputParser<T> extends Parser<T>, FormatProvider {

}

它继承了 Parser 接口

java 复制代码
@FunctionalInterface
public interface Parser<T> {
    T parse(String text);
}

和 FormatProvider 接口

java 复制代码
public interface FormatProvider {

	String getFormat();

}

Parser接口解析文本字符串以生成类型 T 的实例。

FormatProvider为 AI 模型提供文本指令,以便格式化输出,以便可以通过Parser将其解析为类型 T。 这些文本指令通常附加在用户输入到 AI 模型的末尾。


可用实现


OutputParser接口具有以下可用的实现。

  • BeanOutputParser:指定 Java 类的 JSON 模式,并使用 JSON 模式规范的DRAFT_2020_12,因为 OpenAI 表示这将提供最佳结果。 AI 模型的 JSON 输出然后被反序列化为 Java 对象,也就是JavaBean。
  • MapOutputParser:类似于BeanOutputParser,但 JSON 负载被反序列化为java.util.Map<String, Object>实例。
  • ListOutputParser:指定输出为逗号分隔的列表。
    近期,OpenAI 模型已经付出了相当大的努力,以提高模型通过简单指定"以 JSON 返回"的能力,但并非所有模型都支持直接支持返回结构化数据。

示例用法


您可以运行一个完全可工作的示例 Spring AI Azure Workshop,其中的一部分演示了BeanOutputParser的使用。这个工程代码的一部分如下所示。

该示例的用例是使用 AI 模型为演员生成电影作品列表。

使用的用户提示词是

java 复制代码
String userMessage = """
        Generate the filmography for the actor {actor}.
        {format}
        """;

下面显示的类 ActorsFilms

java 复制代码
public class ActorsFilms {

	private String actor;

	private List<String> movies;

    // getters and toString omitted
}

这是一个控制器类,显示了这些类的使用

java 复制代码
    @GetMapping("/ai/output")
    public ActorsFilms generate(@RequestParam(value = "actor", defaultValue = "Jeff Bridges") String actor) {
        var outputParser = new BeanOutputParser<>(ActorsFilms.class);

        String userMessage =
                """
                Generate the filmography for the actor {actor}.
                {format}
                """;

        PromptTemplate promptTemplate = new PromptTemplate(userMessage, Map.of("actor", actor, "format", outputParser.getFormat() ));
        Prompt prompt = promptTemplate.create();
        Generation generation = chatClient.call(prompt).getResult();

        ActorsFilms actorsFilms = outputParser.parse(generation.getOutput().getContent());
        return actorsFilms;
    }

相关推荐
银行数字化转型导师坚鹏11 小时前
如何设计优秀的企业微信私域运营实战培训方案
大数据·python·企业微信
jerryinwuhan11 小时前
最短路径问题总结
开发语言·人工智能·python
wanhengidc11 小时前
云手机能够做些什么?
运维·服务器·人工智能·智能手机·云计算
shelter -唯11 小时前
京东手机项目:手机受欢迎的影响因素分析
python·机器学习·智能手机
悠闲蜗牛�11 小时前
人工智能时代下的全栈开发:整合AI、大数据与云原生的实践策略
大数据·人工智能·云原生
kobe_OKOK_11 小时前
Django ORM 字段查询表达式(Field lookup expressions)
后端·python·django
C嘎嘎嵌入式开发11 小时前
(1)100天python从入门到拿捏
开发语言·python
过往入尘土11 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
ObjectX前端实验室11 小时前
ChatGPT流式输出完全解析之SSE
前端·人工智能
软件开发技术深度爱好者12 小时前
用python制作相册浏览小工具
开发语言·python