聚类与分类的区别

聚类和分类是机器学习中的两个基本概念,两者的主要区别在于用于分类的数据已经预先标记好类别,而用于聚类的数据则没有预先标记的类别。以下是详细介绍:

  • 目的不同。聚类的目的是发现数据中的自然分组,将相似或相关的对象组织在一起,形成一个或多个集群(cluster),以便更好地理解和分析数据;分类的目的是基于已有的分类体系或规则,将新数据点分配到预定义的类别中。
  • 学习方式不同。聚类是一种无监督学习,因为它不依赖于预先定义的类别或带类标的训练实例,而是基于观察和学习,试图发现数据中的隐藏模式;分类是一种有监督学习,它依赖于预先定义的类别和带类标的训练实例,通过训练得到分类器,然后使用这个分类器对新的数据点进行分类。
  • 应用场景不同。聚类更适用于没有明确分类体系或分类体系未知的情况,如市场细分、图像识别等;分类更适用于已经存在明确的分类体系的情况,如垃圾邮件识别、疾病诊断等。
  • 类别数量的确定性不同。聚类分析中,类别数量通常是不确定的,并且在聚类过程中自动生成;分类分析中,类别数量是固定的,在分析之前已经确定。
相关推荐
Tech Synapse1 小时前
联邦学习图像分类实战:基于FATE与PyTorch的隐私保护机器学习系统构建指南
pytorch·机器学习·分类
想看雪的瓜1 小时前
Nature图形复现—两种快速绘制热图的方法
信息可视化·数据挖掘·数据分析
Hello world.Joey4 小时前
数据挖掘入门-二手车交易价格预测
人工智能·python·数据挖掘·数据分析·conda·pandas
漠缠5 小时前
手机相册的 “智能分类” 功能
智能手机·分类·数据挖掘
zeroporn7 小时前
在Mac M1/M2上使用Hugging Face Transformers进行中文文本分类(完整指南)
macos·分类·数据挖掘·nlp·transformer·预训练模型·文本分类
lilye6617 小时前
精益数据分析(53/126):双边市场模式指标全解析与运营策略深度探讨
数据挖掘·数据分析
BioRunYiXue18 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
Blossom.11821 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
请你喝好果汁6411 天前
TWASandGWAS中GBS filtering and GWAS(1)
信息可视化·数据挖掘·数据分析
Leo.yuan1 天前
数据分析怎么做?高效的数据分析方法有哪些?
大数据·数据库·信息可视化·数据挖掘·数据分析