聚类与分类的区别

聚类和分类是机器学习中的两个基本概念,两者的主要区别在于用于分类的数据已经预先标记好类别,而用于聚类的数据则没有预先标记的类别。以下是详细介绍:

  • 目的不同。聚类的目的是发现数据中的自然分组,将相似或相关的对象组织在一起,形成一个或多个集群(cluster),以便更好地理解和分析数据;分类的目的是基于已有的分类体系或规则,将新数据点分配到预定义的类别中。
  • 学习方式不同。聚类是一种无监督学习,因为它不依赖于预先定义的类别或带类标的训练实例,而是基于观察和学习,试图发现数据中的隐藏模式;分类是一种有监督学习,它依赖于预先定义的类别和带类标的训练实例,通过训练得到分类器,然后使用这个分类器对新的数据点进行分类。
  • 应用场景不同。聚类更适用于没有明确分类体系或分类体系未知的情况,如市场细分、图像识别等;分类更适用于已经存在明确的分类体系的情况,如垃圾邮件识别、疾病诊断等。
  • 类别数量的确定性不同。聚类分析中,类别数量通常是不确定的,并且在聚类过程中自动生成;分类分析中,类别数量是固定的,在分析之前已经确定。
相关推荐
飞Link15 小时前
指令调整阶段中的通用模型蒸馏、模型自我提升和数据扩充
python·算法·数据挖掘
2501_9415079415 小时前
使用_ssd300_训练蘑菇分类数据集经验总结_毒菇与食用菇自动识别研究
人工智能·分类·数据挖掘
薛不痒16 小时前
项目:矿物分类(训练模型)
开发语言·人工智能·python·学习·算法·机器学习·分类
AAD5558889916 小时前
伊蚊种类识别与分类——基于VFNet的蚊虫识别模型训练与实现
人工智能·数据挖掘
2501_9421917716 小时前
微生物图像识别与分类:基于YOLO11-C3k2-SFHF的六类微生物自动检测方法详解
人工智能·分类·数据挖掘
2501_9415079416 小时前
YOLO11-C3k2-ODConv玻璃缺陷检测与分类任务详解
人工智能·分类·数据挖掘
2501_9418372616 小时前
财务文档类型识别与分类 _ 基于改进YOLO11-C2PSA-EDFFN模型的文档智能识别系统
人工智能·分类·数据挖掘
qunaa010116 小时前
改进YOLOv5结合SwinTransformer实现青香蕉手指部分自动识别与分类
人工智能·yolo·分类
Liue6123123116 小时前
疟原虫检测与分类_YOLOv8结合ReCalibrationFPN多尺度特征检测方法研究
yolo·分类·数据挖掘
2501_9421917718 小时前
纺织品微观缺陷检测与分类:基于Faster R-CNN的改进模型实现与性能优化_1
分类·r语言·cnn