深度学习入门(9) - Reinforcement Learning 强化学习

Reinforcement Learning

an agent performs actions in environment, and receives rewards

goal: Learn how to take actions that maximize reward

Stochasticity: Rewards and state transitions may be random

Credit assignment : Reward r t r_t rt may not directly depend on action a t a_t at

Nondifferentiable: Can't backprop through the world

Nonstationary: What the agent experiences depends on how it acts

Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple ( S , A , R , P , γ ) (S,A,R,P,\gamma) (S,A,R,P,γ)

S S S: Set of possible states

A A A: Set of possible actions

R R R: Distribution of reward given (state, action) pair

P P P: Transition probability: distribution over next state given (state, action)

γ \gamma γ: Discount factor (trade-off between future and present rewards)

Markov Property: The current state completely characterizes the state of the world. Rewards and next states depend only on current state, not history.

Agent executes a policy π \pi π giving distribution of actions conditioned on states.

Goal : Find best policy that maximizes cumulative discounted reward ∑ t γ t r t \sum_t \gamma^tr_t ∑tγtrt

We will try to find the maximal expected sum of rewards to reduce the randomness.

Value function V π ( s ) V^{\pi}(s) Vπ(s): expected cumulative reward from following policy π \pi π from state s s s

Q function Q π ( s , a ) Q^{ \pi}(s,a) Qπ(s,a) : expected cumulative reward from following policy π \pi π from taking action a a a in state s s s

Bellman Equation

After taking action a in state s, we get reward r and move to a new state s'. After that, the max possible reward we can get is max ⁡ a ′ Q ∗ ( s ′ , a ′ ) \max_{a'} Q^*(s',a') maxa′Q∗(s′,a′)

Idea: find a function that satisfy Bellman equation then it must be optimal

start with a random Q, and use Bellman equation as an update rule.

But if the state is large/infinite, we can't iterate them.

Approximate Q(s, a) with a neural network, use Bellman equation as loss function.

-> Deep q learning

Policy Gradients

Train a network π θ ( a , s ) \pi_{\theta}(a,s) πθ(a,s) that takes state as input, gives distribution over which action to take

Objective function: Expected future rewards when following policy π θ \pi_{\theta} πθ

Use gradient ascent -> play some tricks to make it differentiable

Other approaches:

Actor-Critic

Model-Based

Imitation Learning

Inverse Reinforcement Learning

Adversarial Learning

...

Stochastic computation graphs

相关推荐
cosmos31526 分钟前
深度学习进行网络流识别
深度学习·算法
王会举36 分钟前
让SQL飞起来:搭建企业AI应用的SQL性能优化实战
数据库·人工智能·ai·性能优化
大海里的番茄37 分钟前
告别昂贵语音合成服务!用GPT-SoVITS生成你的个性化AI语音
人工智能·gpt
LitchiCheng42 分钟前
Qwen2.5-VL视觉大语言模型复现过程,没碰到什么坑
人工智能·语言模型·自然语言处理
白熊18844 分钟前
【计算机视觉】OpenCV实战项目-AdvancedLaneDetection 车道检测
人工智能·opencv·计算机视觉
Ac157ol1 小时前
《基于神经网络实现手写数字分类》
人工智能·深度学习·神经网络·机器学习·cnn
好看资源平台1 小时前
神经隐写术与量子加密:AI生成图像的隐蔽传输——突破数字水印新维度
人工智能
Hongs_Cai1 小时前
机器学习简介
人工智能·机器学习
机器之心1 小时前
Jeff Dean演讲回顾LLM发展史,Transformer、蒸馏、MoE、思维链等技术都来自谷歌
人工智能
强化学习与机器人控制仿真1 小时前
ROS & ROS2 机器人深度相机激光雷达多传感器标定工具箱入门教程(一)
开发语言·人工智能·stm32·深度学习·机器人·自动驾驶