深度学习入门(9) - Reinforcement Learning 强化学习

Reinforcement Learning

an agent performs actions in environment, and receives rewards

goal: Learn how to take actions that maximize reward

Stochasticity: Rewards and state transitions may be random

Credit assignment : Reward r t r_t rt may not directly depend on action a t a_t at

Nondifferentiable: Can't backprop through the world

Nonstationary: What the agent experiences depends on how it acts

Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple ( S , A , R , P , γ ) (S,A,R,P,\gamma) (S,A,R,P,γ)

S S S: Set of possible states

A A A: Set of possible actions

R R R: Distribution of reward given (state, action) pair

P P P: Transition probability: distribution over next state given (state, action)

γ \gamma γ: Discount factor (trade-off between future and present rewards)

Markov Property: The current state completely characterizes the state of the world. Rewards and next states depend only on current state, not history.

Agent executes a policy π \pi π giving distribution of actions conditioned on states.

Goal : Find best policy that maximizes cumulative discounted reward ∑ t γ t r t \sum_t \gamma^tr_t ∑tγtrt

We will try to find the maximal expected sum of rewards to reduce the randomness.

Value function V π ( s ) V^{\pi}(s) Vπ(s): expected cumulative reward from following policy π \pi π from state s s s

Q function Q π ( s , a ) Q^{ \pi}(s,a) Qπ(s,a) : expected cumulative reward from following policy π \pi π from taking action a a a in state s s s

Bellman Equation

After taking action a in state s, we get reward r and move to a new state s'. After that, the max possible reward we can get is max ⁡ a ′ Q ∗ ( s ′ , a ′ ) \max_{a'} Q^*(s',a') maxa′Q∗(s′,a′)

Idea: find a function that satisfy Bellman equation then it must be optimal

start with a random Q, and use Bellman equation as an update rule.

But if the state is large/infinite, we can't iterate them.

Approximate Q(s, a) with a neural network, use Bellman equation as loss function.

-> Deep q learning

Policy Gradients

Train a network π θ ( a , s ) \pi_{\theta}(a,s) πθ(a,s) that takes state as input, gives distribution over which action to take

Objective function: Expected future rewards when following policy π θ \pi_{\theta} πθ

Use gradient ascent -> play some tricks to make it differentiable

Other approaches:

Actor-Critic

Model-Based

Imitation Learning

Inverse Reinforcement Learning

Adversarial Learning

...

Stochastic computation graphs

相关推荐
学历真的很重要3 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友3 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何3 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何3 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何3 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何3 小时前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI4 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)4 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人5 小时前
DeepAgent学习
人工智能·学习
测试人社区—66795 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率