【Spring AI】11. 通用模型 API

文章目录

通用模型 API

为了给所有 AI 模型客户端提供基础,创建了通用模型 API。通过遵循通用模式,使得您可以更加容易向 Spring AI 贡献新的 AI 模型。以下部分将介绍这个 API。

类图


ModelClient


ModelClient 接口提供了一个用于调用 AI 模型的通用 API 。通过抽象发送请求和接收响应的过程,处理与各种类型的 AI 模型的交互。该接口使用 Java 泛型来适应不同类型的请求和响应,增强了在不同 AI 模型实现中的灵活性和适应性。

下面定义了接口:

java 复制代码
public interface ModelClient<TReq extends ModelRequest<?>, TRes extends ModelResponse<?>> {

	/**
	 * Executes a method call to the AI model.
	 * @param request the request object to be sent to the AI model
	 * @return the response from the AI model
	 */
	TRes call(TReq request);

}

StreamingModelClient

StreamingModelClient 接口提供了一个用于调用流式响应的 AI 模型的通用 API。它抽象了发送请求和接收流式响应的过程。该接口使用 Java 泛型来适应不同类型的请求和响应,增强了在不同 AI 模型实现之间的灵活性和适应性。

java 复制代码
public interface StreamingModelClient<TReq extends ModelRequest<?>, TResChunk extends ModelResponse<?>> {

	/**
	 * Executes a method call to the AI model.
	 * @param request the request object to be sent to the AI model
	 * @return the streaming response from the AI model
	 */
	Flux<TResChunk> stream(TReq request);

}

ModelRequest


表示向 AI 模型发出请求的接口。该接口封装了与 AI 模型交互所需的必要信息,包括指令或输入(通用类型 T)和其他模型选项参数。它提供了一种标准化的方式来向 AI 模型发送请求,确保所有必要的细节都包含在内,并且可以轻松管理。

java 复制代码
public interface ModelRequest<T> {

	/**
	 * Retrieves the instructions or input required by the AI model.
	 * @return the instructions or input required by the AI model
	 */
	T getInstructions(); // required input

	/**
	 * Retrieves the customizable options for AI model interactions.
	 * @return the customizable options for AI model interactions
	 */
	ModelOptions getOptions();

}

ModelOptions


表示 AI 模型交互的可定制选项参数的接口。这个标记接口允许指定各种设置和参数,可以影响 AI 模型的行为和输出。它旨在可以灵活的微调,确保 AI 模型可以满足具体要求。

java 复制代码
public interface ModelOptions {

}

ModelResponse


表示从 AI 模型接收到的响应的接口。这个接口提供方法来访问 AI 模型生成的主要结果或结果列表,以及响应元数据。它作为一种标准化的方式来封装和管理来自 AI 模型的输出,确保轻松检索和处理生成的信息。

java 复制代码
public interface ModelResponse<T extends ModelResult<?>> {

	/**
	 * Retrieves the result of the AI model.
	 * @return the result generated by the AI model
	 */
	T getResult();

	/**
	 * Retrieves the list of generated outputs by the AI model.
	 * @return the list of generated outputs
	 */
	List<T> getResults();

	/**
	 * Retrieves the response metadata associated with the AI model's response.
	 * @return the response metadata
	 */
	ResponseMetadata getMetadata();

}

ModelResult


该接口提供了AI模型的主要输出以及与该结果相关联的元数据的方法。它旨在提供一种标准化和全面的方式来处理和解释人工智能模型产生的输出。

java 复制代码
public interface ModelResult<T> {

	/**
	 * Retrieves the output generated by the AI model.
	 * @return the output generated by the AI model
	 */
	T getOutput();

	/**
	 * Retrieves the metadata associated with the result of an AI model.
	 * @return the metadata associated with the result
	 */
	ResultMetadata getMetadata();

}

相关推荐
Bigemap4 分钟前
如何保存WAsp软件需要的 map格式(.map)的文件
人工智能·无人机·政务·bigemappro添加地图
conca5 分钟前
Java+MySQL时区难题-Date自动转换String差8小时
数据库·mysql
闲云一鹤6 分钟前
2026 最新 ComfyUI 教程 - 本地部署 AI 生图模型 - Z-Image-Turbo
前端·人工智能·ai编程
幻云20109 分钟前
Python深度学习:从入门到实战
人工智能·python
ldccorpora10 分钟前
Multiple-Translation Arabic (MTA) Part 2数据集介绍,官网编号LDC2005T05
人工智能·深度学习·自然语言处理·动态规划·语音识别
GISer_Jing23 分钟前
AI Agent 人类参与HITL与知识检索RAG
人工智能·设计模式·aigc
萧曵 丶35 分钟前
Redis 是单线程的吗?
数据库·redis
老邓计算机毕设38 分钟前
SSM校园招聘管理系统968b0(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面
数据库·ssm 框架·校园招聘管理系统·简历投递
Zoey的笔记本40 分钟前
敏捷与稳定并行:Scrum看板+BPM工具选型指南
大数据·前端·数据库·python·低代码