pytorch-解决过拟合之动量与学习率衰减

目录

  • [1. momentum动量](#1. momentum动量)
  • [2. pytorch增加momentum](#2. pytorch增加momentum)
  • [3. 学习率衰减](#3. 学习率衰减)
  • [4. 学习率衰减的方式](#4. 学习率衰减的方式)
    • [4.1 loss连续几次无改善衰减](#4.1 loss连续几次无改善衰减)
  • [4.2 步进式衰减](#4.2 步进式衰减)

1. momentum动量

下图给出了梯度公式和增加了动量的梯度公式,β z k z^k zk其中的 z k z^k zk就是上次的梯度,而β决定了 w k + 1 w^{k+1} wk+1更偏向于上次梯度还是本次梯度。也就是说梯度增加了动量后,梯度更新要同时考虑上次的惯性和本次的梯度。

未加动量

加了动量

从两幅图可以看出加了动量比未加动量要平滑的多,未加动量很难找到全局极小值,而加了动量后找到全局极小值的概率要大的多。

2. pytorch增加momentum

如图中SGD优化器增加momentum参数,而Adam优化器是不支持输入动量参数的

3. 学习率衰减

下图为三种学习率模型曲线的不同表现,学习率太低训练比较慢,比如本来4天训完,结果可能10天才能训完,学习率太高loss震荡比较厉害很难找到极小值。

所谓学习率衰减就是开始使用较大的学习率,之后使用一定的策略使学习率不断减小,比如:有60k数据每训练10k学习率减小1/2

4. 学习率衰减的方式

4.1 loss连续几次无改善衰减

torch.optim.lr_scheduler.ReduceLROnPlateau函数的功能是,当loss在patience个连续epoch后没有改善时,就减小学习率factor倍

python 复制代码
CLASS torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose='deprecated')

optimizer-优化器

mode-min或max,min:当度量的量停止减小时,减小学习率,max:当度量的量停止增大时,减小学习率,默认min

factor-每次减少倍率

4.2 步进式衰减

比如:每30k衰减0.1

相关推荐
10岁的博客1 小时前
PyTorch快速搭建CV模型实战
人工智能·pytorch·python
Geoking.5 小时前
PyTorch torch.unique() 基础与实战
人工智能·pytorch·python
be_humble15 小时前
GPU机器-显卡占用
pytorch·python·深度学习
敲代码的猴先生1 天前
技术分享 | torch.profiler:利用探针收集模型执行信息的性能分析工具
人工智能·pytorch·经验分享·语言模型·性能优化
Geoking.1 天前
PyTorch 基础详解:tensor.item() 方法
人工智能·pytorch·python
南方的狮子先生1 天前
【深度学习】60 分钟 PyTorch 极速入门:从 Tensor 到 CIFAR-10 分类
人工智能·pytorch·python·深度学习·算法·分类·1024程序员节
reept1 天前
Pytorch常用函数学习摘录
人工智能·pytorch·学习
低音钢琴1 天前
【人工智能系列:走近人工智能05】基于 PyTorch 的机器学习开发与部署实战
人工智能·pytorch·机器学习
胖哥真不错1 天前
Python基于PyTorch实现多输入多输出进行BP神经网络回归预测项目实战
pytorch·python·毕业设计·论文·毕设·多输入多输出·bp神经网络回归预测
合作小小程序员小小店2 天前
舆情,情感微博系统demo,基于python+qt+nlp,开发语言python,界面库qt,无数据库版,数据来自第三方网站获取,
开发语言·pytorch·qt·自然语言处理·nlp