Flink checkpoint 源码分析- Flink Checkpoint 触发流程分析

序言

最近因为工作需要在阅读flink checkpoint处理机制,学习的过程中记录下来,并分享给大家。也算是学习并记录。

目前公司使用的flink版本为1.11。因此以下的分析都是基于1.11版本来的。

在分享前可以简单对flink checkpoint机制做一个大致的了解。

Flink的checkpoint的过程依赖于异步屏障快照算法,该算法在《Lightweight Asynchronous Snapshots for Distributed Dataflows》这篇paper中被提出。理解了这篇paper也就明白了flink的chekpoint机制。paper整体来说比较简单易懂,下面简单介绍下paper的大体内容和核心的算法。

1\] 引用:[Flink Checkpoint原理解析 - 知乎](https://zhuanlan.zhihu.com/p/144876828 "Flink Checkpoint原理解析 - 知乎")

代码分析

Flink checkpoint 的触发是通过CheckpointCoordinator 的定时线程完后。

复制代码
	private ScheduledFuture<?> scheduleTriggerWithDelay(long initDelay) {
		return timer.scheduleAtFixedRate(
			new ScheduledTrigger(),
			initDelay, baseInterval, TimeUnit.MILLISECONDS);
	}

之后通过snapshotTaskState RPC的调用来实现触发checkpoint的

代码中遍历executions 来触发checkpoint,那么executions是什么东西呢?

Flink 代码中维护了一个叫tasksToTrigger的数组。

这个地方向前追溯,可以一直到jobgrap的生成。从名字和代码就可以看出,这个里面存的是没有inputchannel的节点,source节点没有inputchannel,所以回答上面的问题,executions 中是source节点,也就是做checkpoint 时 checkpointcoordinate 会给source节点发送rpc。

通过一个很长亮度的调用,最后到了SubtaskCheckpointCoordinatorImpl 中的

java 复制代码
public void checkpointState(
			CheckpointMetaData metadata,
			CheckpointOptions options,
			CheckpointMetricsBuilder metrics,
			OperatorChain<?, ?> operatorChain,
			Supplier<Boolean> isCanceled) throws Exception {

		checkNotNull(options);
		checkNotNull(metrics);

		// All of the following steps happen as an atomic step from the perspective of barriers and
		// records/watermarks/timers/callbacks.
		// We generally try to emit the checkpoint barrier as soon as possible to not affect downstream
		// checkpoint alignments

		if (lastCheckpointId >= metadata.getCheckpointId()) {
			LOG.info("Out of order checkpoint barrier (aborted previously?): {} >= {}", lastCheckpointId, metadata.getCheckpointId());
			channelStateWriter.abort(
				metadata.getCheckpointId(),
				new CancellationException("checkpoint aborted via notification"),
				true);
			checkAndClearAbortedStatus(metadata.getCheckpointId());
			return;
		}

		// Step (0): Record the last triggered checkpointId and abort the sync phase of checkpoint if necessary.
		lastCheckpointId = metadata.getCheckpointId();
		if (checkAndClearAbortedStatus(metadata.getCheckpointId())) {
			// broadcast cancel checkpoint marker to avoid downstream back-pressure due to checkpoint barrier align.
			operatorChain.broadcastEvent(new CancelCheckpointMarker(metadata.getCheckpointId()));
			LOG.info("Checkpoint {} has been notified as aborted, would not trigger any checkpoint.", metadata.getCheckpointId());
			return;
		}

        // if checkpoint has been previously unaligned, but was forced to be aligned (pointwise
        // connection), revert it here so that it can jump over output data
        if (options.getAlignment() == CheckpointOptions.AlignmentType.FORCED_ALIGNED) {
            options = options.withUnalignedSupported();
            initInputsCheckpoint(metadata.getCheckpointId(), options);
        }

		// Step (1): Prepare the checkpoint, allow operators to do some pre-barrier work.
		//           The pre-barrier work should be nothing or minimal in the common case.
		operatorChain.prepareSnapshotPreBarrier(metadata.getCheckpointId());

		// Step (2): Send the checkpoint barrier downstream
        LOG.debug(
                "Task {} broadcastEvent at {}, triggerTime {}, passed time {}",
                taskName,
                System.currentTimeMillis(),
                metadata.getTimestamp(),
                System.currentTimeMillis() - metadata.getTimestamp());
        CheckpointBarrier checkpointBarrier =
                new CheckpointBarrier(metadata.getCheckpointId(), metadata.getTimestamp(), options);
        operatorChain.broadcastEvent(checkpointBarrier, options.isUnalignedCheckpoint());

        // Step (3): Register alignment timer to timeout aligned barrier to unaligned barrier
        registerAlignmentTimer(metadata.getCheckpointId(), operatorChain, checkpointBarrier);

        // Step (4): Prepare to spill the in-flight buffers for input and output
        if (options.needsChannelState()) {
			// output data already written while broadcasting event
			channelStateWriter.finishOutput(metadata.getCheckpointId());
		}

        // Step (5): Take the state snapshot. This should be largely asynchronous, to not impact
        // progress of the
		// streaming topology

		Map<OperatorID, OperatorSnapshotFutures> snapshotFutures = new HashMap<>(operatorChain.getNumberOfOperators());
		try {
			if (takeSnapshotSync(snapshotFutures, metadata, metrics, options, operatorChain, isCanceled)) {
				finishAndReportAsync(snapshotFutures, metadata, metrics, options);
			} else {
				cleanup(snapshotFutures, metadata, metrics, new Exception("Checkpoint declined"));
			}
		} catch (Exception ex) {
			cleanup(snapshotFutures, metadata, metrics, ex);
			throw ex;
		}
	}

代码中可以看到构造了CheckpointBarrier, source将barrier当成数据广播给下游的所有节点。使用的方法就是operatorChain.brodacastEvent()。这里就回到最开始提到的异步屏障快照算法。

下游收到了barrier,如何进行快照处理的?flink同时有多种类型的checkpoint,他们分别的处理时机是啥,后面我会进一步进行代码分析。

java 复制代码
CheckpointBarrier checkpointBarrier =
                new CheckpointBarrier(metadata.getCheckpointId(), metadata.getTimestamp(), options);
        operatorChain.broadcastEvent(checkpointBarrier, options.isUnalignedCheckpoint());
相关推荐
实时数据8 分钟前
DPI深度数据包检测 监测用户浏览搜索行为 分析在线活动 频繁访问的购物网站或搜索的关键词 等判断其消费偏好
大数据·安全·big data
智慧化智能化数字化方案1 小时前
数据治理进阶——解读大数据治理主数据管理规划设计方案【附全文阅读】
大数据·数据治理·主数据管理规划
Hello.Reader1 小时前
Flink 大状态 Checkpoint 调优让 Checkpoint 跑得稳、恢复追得上
大数据·flink
是做服装的同学1 小时前
如何选择适合企业的优质服装软件ERP系统?
大数据·经验分享·其他
Elastic 中国社区官方博客1 小时前
Elasticsearch 9.3 增加 bfloat16 向量 支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
A小码哥2 小时前
Claude 今天发布了 Sonnet 4.6, 深度对比:sonnet vs Opus,如何选择最适合你的模型?
大数据·数据库·人工智能
破晓之翼2 小时前
关于AI应用开发需要了解专有名词解释和实际作用
大数据·人工智能
城数派2 小时前
2001-2024年我国乡镇级的逐年植被净初级生产力(NPP)数据(Shp/Excel格式)
大数据·数据分析·excel
Hello.Reader2 小时前
Flink Savepoint 可控升级、可回滚、可分叉的“状态快照”
大数据·flink
Elastic 中国社区官方博客2 小时前
Elasticsearch 用于词形还原的开源 Hebrew 分析器
大数据·elasticsearch·搜索引擎·ai·开源·全文检索·中文分词