图像在神经网络中的预处理与后处理的原理和作用(最详细版本)

1. 问题引出及内容介绍

相信大家在学习与图像任务相关的神经网络时,经常会见到这样一个预处理方式。

python 复制代码
self.to_tensor_norm = transforms.Compose([
        transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

具体原理及作用稍后解释,不知道大家有没有想过,将这样一个经过改变的图像数据输入到网络中,那么输出的结果也是这种类似改动过的,那岂不是真实的数据了

所以一般会有个后处理的代码,如下:

python 复制代码
def tensor2img(img):
        img = np.round((img.permute(0, 2, 3, 1).cpu().numpy() + 1)* 127.5)
        img = img.clip(min=0, max=255).astype(np.uint8)
        return img

为什么这样就可以将改动过的数据恢复原样了,后处理的代码看着也不像预处理的逆过程啊。

先来分析一下代码,了解其处理过程,最后再推理出这两个互为逆过程。

2. 预处理

transforms.ToTensor()

transforms.ToTensor()是PyTorch中的一个图像转换方法,用于将PIL图像或numpy数组转换为PyTorch张量。具体来说,它会执行以下操作:

  1. 将图像或数组的数据类型从uint8(0-255)转换为float32(0.0-1.0)。
  2. 对图像进行标准化处理,即将像素值除以255 ,将其缩放到0到1之间。
  3. 如果输入是一个多通道的图像(例如RGB图像),它会重新排列通道,将通道维度放在第一个维度上。

下面是我翻译的源码的注释,包含了输入的要求:

torchvision.transforms.ToTensor 类用于将 PIL 图像numpy 数组 转换为张量。这个转换不支持 torchscript。

将一个 PIL 图像或 numpy 数组(大小为 H x W x C,其中 H 表示高度,W 表示宽度,C 表示通道数)的像素值范围从 [0, 255] 转换为范围在 [0.0, 1.0] 的 torch.FloatTensor,其形状为 (C x H x W)。这种转换只有在以下情况下才会进行:

  • 如果 PIL 图像的模式为(L、LA、P、I、F、RGB、YCbCr、RGBA、CMYK、1)之一
  • 如果 numpy 数组的数据类型为 np.uint8 。(因为uint8的类型的取值范围是0-255)

在其他情况下,转换后的张量将不会进行缩放。

两者内容互为补充,相信足够理解这个代码了,如果不够理解,没事,我自己写个代码解释:

上述数值被分别除以255得到转换后的张量,现在应该有更直观的理解了。

transforms.Normalize()

transforms.Normalize()是PyTorch中的一个图像转换方法,用于对张量进行标准化处理。具体来说,它执行以下操作:

  1. 对每个通道进行均值归一化:将每个通道的像素值减去均值 ,以使每个通道的均值为0。
  2. 对每个通道进行标准差归一化:将每个通道的像素值除以标准差 ,以使每个通道的标准差为1。

在给定的示例中,(0.5, 0.5, 0.5)表示每个通道的均值,(0.5, 0.5, 0.5)表示每个通道的标准差。这个转换将图像的每个通道的像素值从0到1 的范围,调整到**-1到1**的范围内。

上述的预处理的两个步骤可以概括为归一化或者标准化,为什么需要这两个步骤呢,我举例子加以说明

  1. 加速收敛

    • 例子:假设有一个深度神经网络,其输入是未经归一化的图像数据,像素值范围是0到255。如果使用简单的梯度下降法进行优化,由于像素值的范围很大,梯度更新可能会非常缓慢。通过将数据归一化到0到1之间,梯度更新将更加稳定,从而加快收敛速度。
  2. 提高模型性能

    • 例子:考虑一个用于手写数字识别的卷积神经网络(CNN)。如果输入图像的亮度差异很大,网络可能会对亮度较高的图像更加敏感。通过归一化亮度,网络可以更专注于识别数字的形状和结构,而不是亮度。
  3. 稳定性

    • 例子:在处理图像数据时,如果某些像素值异常高(例如,由于光照条件的变化),这可能会导致数值计算中的溢出问题。通过归一化,可以将这些极端值限制在一个较小的范围内,从而提高数值稳定性。
  4. 防止过拟合

    • 例子:在一个包含多种类型图像的数据集中,如果某些类型的图像具有更高的对比度,网络可能会偏向于学习这些特征,从而忽视其他类型的图像。通过归一化,可以减少这种偏差,使网络能够更均匀地学习所有类型的图像。
  5. 适应不同初始化

    • 例子:使用He初始化或Xavier初始化等方法为神经网络的权重赋予初始值时,这些方法通常假设输入数据已经被归一化。如果输入数据未经归一化,权重初始化的效果可能会大打折扣。
  6. 节省计算资源

    • 例子:在进行大规模图像处理时,如果输入数据未经归一化,那么在浮点数运算中可能会遇到数值溢出的问题,这需要使用更高精度的数据类型,从而增加计算资源的消耗。归一化可以减少这种情况的发生。
  7. 改善梯度下降的效率

    • 例子:在训练一个深度神经网络时,如果输入数据未经归一化,梯度可能会在某些方向上过大,在其他方向上过小。这会导致优化过程中的锯齿现象,使得找到全局最小值变得更加困难。归一化有助于平衡梯度的大小,使优化过程更加平滑。

3. 后处理

python 复制代码
img = np.round((img.permute(0, 2, 3, 1).cpu().numpy() + 1)* 127.5)

这行代码的作用是将PyTorch张量转换为numpy数组,并执行以下操作:

  1. img.permute(0, 2, 3, 1):这一步是对张量的维度进行重新排列,将通道维度移到最后一个维度上。这通常是因为在PyTorch中,图像的通道维度是第二个维度,而在numpy数组中,通常是最后一个维度。所以这一步是为了将数据转换为numpy数组后,通道维度的顺序与numpy数组的约定相匹配。

  2. .cpu().numpy():这一步将PyTorch张量移动到CPU上,并将其转换为numpy数组。通常,在GPU上进行计算后,需要将数据移回CPU上才能调用numpy方法。

  3. + 1:这一步将数组中的所有元素加1,将范围从[-1, 1]映射到[0, 2]。

  4. * 127.5:这一步将数组中的所有元素乘以127.5,将范围从[0, 2]映射到[0, 255],将数据重新缩放到uint8范围内。

  5. np.round():这一步对数组中的所有元素执行四舍五入操作,将浮点数转换为整数。

综合起来,这行代码的作用是将PyTorch张量(范围在[-1, 1]之间)转换为numpy数组,并将其值重新映射到uint8范围内(0-255),并将浮点数转换为整数。

python 复制代码
 img = img.clip(min=0, max=255).astype(np.uint8)

这行代码的作用是确保numpy数组中的数值范围在0到255之间,并将其类型转换为无符号8位整数(uint8),以便表示图像像素值。

4. 推导逆过程

先把代码放一起进行比较

python 复制代码
预处理:
self.to_tensor_norm = transforms.Compose([
        transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

后处理:
def tensor2img(img):
        img = np.round((img.permute(0, 2, 3, 1).cpu().numpy() + 1)* 127.5)
        img = img.clip(min=0, max=255).astype(np.uint8)
        return img

下面是推导过程:

完结撒花!

不足之处还请大家指正。

相关推荐
凡人的AI工具箱几秒前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜6 分钟前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤7 分钟前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改
凡人的AI工具箱10 分钟前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军14 分钟前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
诚威_lol_中大努力中37 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金1 小时前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_1 小时前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索