交叉调制少样本图像生成用于结直肠组织分类

文章目录

  • [Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification](#Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification)

Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

摘要

  1. 提出问题

    • 针对罕见癌症组织的组织病理训练数据稀缺问题,他们提出了少样本结直肠组织图像生成方法。
  2. 方法介绍

    • 提出的方法名为XM-GAN,接受一个基准图像和一对参考组织图像作为输入,生成高质量且多样化的图像。
    • 在XM-GAN中,采用了一种新颖的可控融合块,通过密集聚合参考图像和基准图像中局部区域的相似性,产生局部一致的特征。
  3. 研究贡献

    • 他们是第一个研究结直肠组织图像中少样本生成的团队。
    • 通过广泛的定性、定量和专家(病理学家)评估,对其提出的方法进行评估。
  4. 评估结果

    • 在专家评估中,病理学家仅在55%的时间内能够区分XM-GAN生成的组织图像和真实图像。
    • 利用生成的图像作为数据增强,解决少样本组织图像分类任务,在平均准确率方面取得了4.4%的提升。

方法


Fig. 1 : XM-GAN由一个CNN编码器、一个基于Transformer的可控融合块(CFB)和一个用于组织图像生成的CNN解码器组成。对于K-shot设置,一个共享编码器 F E F_E FE接受一个基准组织图像 x b x^b xb 以及 K − 1 K-1 K−1 个参考组织图像 x i r e f i = 1 K − 1 {x^{ref}i}^{K-1}{i=1} xirefi=1K−1,分别输出视觉特征 h b h^b hb 和 h i r e f h^{ref}_i hiref。在CFB中,一个映射网络计算元权重,用于在交叉注意力期间生成特征重新加权的调制权重。交叉注意力得到的特征 f i f_i fi 被融合并输入到解码器 (FD) 中,生成一幅图像 x ^ \hat{x} x^。


z z z为噪声, α \alpha α为控制参数

实验结果

相关推荐
CES_Asia14 小时前
亚洲科技话语权之争:CES Asia 2026核心展区席位进入收官阶段
大数据·人工智能·科技·物联网·机器人
wdfk_prog14 小时前
[Linux]学习笔记系列 -- [fs]mnt_idmapping
linux·笔记·学习
一个会的不多的人14 小时前
人工智能基础篇:概念性名词浅谈(第十四讲)
人工智能·制造·数字化转型
Brduino脑机接口技术答疑14 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg
玄同76514 小时前
Python 装饰器:LLM API 的安全与可观测性增强
开发语言·人工智能·python·安全·自然语言处理·numpy·装饰器
房产中介行业研习社14 小时前
市面上比较主流的房产中介管理系统有哪些推荐?
大数据·人工智能·房产直播技巧·房产直播培训
学习3人组14 小时前
目标检测模型选型+训练调参极简步骤清单
人工智能·目标检测·决策树
Yeats_Liao14 小时前
MindSpore开发之路(十七):静态图 vs. 动态图:掌握MindSpore的两种执行模式
人工智能·深度学习·机器学习
旖旎夜光14 小时前
Linux(7)(下)
linux·学习
keep_learning11114 小时前
Z-Image模型架构全解析
人工智能·算法·计算机视觉·大模型·多模态