交叉调制少样本图像生成用于结直肠组织分类

文章目录

  • [Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification](#Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification)

Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

摘要

  1. 提出问题

    • 针对罕见癌症组织的组织病理训练数据稀缺问题,他们提出了少样本结直肠组织图像生成方法。
  2. 方法介绍

    • 提出的方法名为XM-GAN,接受一个基准图像和一对参考组织图像作为输入,生成高质量且多样化的图像。
    • 在XM-GAN中,采用了一种新颖的可控融合块,通过密集聚合参考图像和基准图像中局部区域的相似性,产生局部一致的特征。
  3. 研究贡献

    • 他们是第一个研究结直肠组织图像中少样本生成的团队。
    • 通过广泛的定性、定量和专家(病理学家)评估,对其提出的方法进行评估。
  4. 评估结果

    • 在专家评估中,病理学家仅在55%的时间内能够区分XM-GAN生成的组织图像和真实图像。
    • 利用生成的图像作为数据增强,解决少样本组织图像分类任务,在平均准确率方面取得了4.4%的提升。

方法


Fig. 1 : XM-GAN由一个CNN编码器、一个基于Transformer的可控融合块(CFB)和一个用于组织图像生成的CNN解码器组成。对于K-shot设置,一个共享编码器 F E F_E FE接受一个基准组织图像 x b x^b xb 以及 K − 1 K-1 K−1 个参考组织图像 x i r e f i = 1 K − 1 {x^{ref}i}^{K-1}{i=1} xirefi=1K−1,分别输出视觉特征 h b h^b hb 和 h i r e f h^{ref}_i hiref。在CFB中,一个映射网络计算元权重,用于在交叉注意力期间生成特征重新加权的调制权重。交叉注意力得到的特征 f i f_i fi 被融合并输入到解码器 (FD) 中,生成一幅图像 x ^ \hat{x} x^。


z z z为噪声, α \alpha α为控制参数

实验结果

相关推荐
m0_704887897 小时前
Day46
人工智能
是店小二呀7 小时前
在 AtomGit 昇腾 Atlas 800T上解锁 SGLang:零成本打造高性能推理服务
人工智能·pytorch·深度学习·npu
图生生7 小时前
饰品商拍提效:AI图生图实现白底图转上身图
人工智能·ai
万事可爱^7 小时前
GitCode+昇腾部署Rnj-1模型实践教程
人工智能·深度学习·语言模型·gitcode·本地部署·昇腾npu
高洁017 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
njsgcs7 小时前
ai控制鼠标生成刀路系统 环境搭建尝试7 lsd识别刀路线段2
人工智能
哈__7 小时前
实测VLM:昇腾平台上的视觉语言模型测评与优化实践
人工智能·语言模型·自然语言处理·gitcode·sglang
海森大数据7 小时前
数据筛选新范式:以质胜量,揭开大模型后训练黑箱
人工智能·语言模型
PNP Robotics7 小时前
PNP机器人受邀参加英业达具身智能活动
大数据·人工智能·python·学习·机器人
iconball7 小时前
个人用云计算学习笔记 --24 虚拟化、KVM 基础使用与热迁移实验、VMware ESXi笔记
运维·笔记·学习·云计算