交叉调制少样本图像生成用于结直肠组织分类

文章目录

  • [Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification](#Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification)

Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

摘要

  1. 提出问题

    • 针对罕见癌症组织的组织病理训练数据稀缺问题,他们提出了少样本结直肠组织图像生成方法。
  2. 方法介绍

    • 提出的方法名为XM-GAN,接受一个基准图像和一对参考组织图像作为输入,生成高质量且多样化的图像。
    • 在XM-GAN中,采用了一种新颖的可控融合块,通过密集聚合参考图像和基准图像中局部区域的相似性,产生局部一致的特征。
  3. 研究贡献

    • 他们是第一个研究结直肠组织图像中少样本生成的团队。
    • 通过广泛的定性、定量和专家(病理学家)评估,对其提出的方法进行评估。
  4. 评估结果

    • 在专家评估中,病理学家仅在55%的时间内能够区分XM-GAN生成的组织图像和真实图像。
    • 利用生成的图像作为数据增强,解决少样本组织图像分类任务,在平均准确率方面取得了4.4%的提升。

方法


Fig. 1 : XM-GAN由一个CNN编码器、一个基于Transformer的可控融合块(CFB)和一个用于组织图像生成的CNN解码器组成。对于K-shot设置,一个共享编码器 F E F_E FE接受一个基准组织图像 x b x^b xb 以及 K − 1 K-1 K−1 个参考组织图像 x i r e f i = 1 K − 1 {x^{ref}i}^{K-1}{i=1} xirefi=1K−1,分别输出视觉特征 h b h^b hb 和 h i r e f h^{ref}_i hiref。在CFB中,一个映射网络计算元权重,用于在交叉注意力期间生成特征重新加权的调制权重。交叉注意力得到的特征 f i f_i fi 被融合并输入到解码器 (FD) 中,生成一幅图像 x ^ \hat{x} x^。


z z z为噪声, α \alpha α为控制参数

实验结果

相关推荐
Arms20610 分钟前
python时区库学习
开发语言·python·学习
白日做梦Q11 分钟前
深度学习中的正则化技术全景:从Dropout到权重衰减的优化逻辑
人工智能·深度学习
清铎18 分钟前
大模型训练_week3_day15_Llama概念_《穷途末路》
前端·javascript·人工智能·深度学习·自然语言处理·easyui
码农三叔22 分钟前
(1-2)人形机器人的发展历史、趋势与应用场景:未来趋势与行业需求
人工智能·microsoft·机器人
世人万千丶23 分钟前
Day 5: Flutter 框架文件系统交互 - 鸿蒙沙盒机制下的文件读写与安全策略
学习·flutter·华为·harmonyos·鸿蒙·鸿蒙系统
与光同尘 大道至简26 分钟前
ESP32 小智 AI 机器人入门教程从原理到实现(自己云端部署)
人工智能·python·单片机·机器人·github·人机交互·visual studio
OJAC11127 分钟前
当DeepSeek V4遇见近屿智能:一场AI进化的叙事正在展开
人工智能·深度学习·机器学习
xiaozhazha_31 分钟前
制造业ERP系统选型实战:快鹭云如何用AI+低代码破解库存管理难题
人工智能·低代码·rxjava
babe小鑫33 分钟前
中专学历转行招聘数据分析的可行性分析
数据挖掘·数据分析