交叉调制少样本图像生成用于结直肠组织分类

文章目录

  • [Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification](#Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification)

Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

摘要

  1. 提出问题

    • 针对罕见癌症组织的组织病理训练数据稀缺问题,他们提出了少样本结直肠组织图像生成方法。
  2. 方法介绍

    • 提出的方法名为XM-GAN,接受一个基准图像和一对参考组织图像作为输入,生成高质量且多样化的图像。
    • 在XM-GAN中,采用了一种新颖的可控融合块,通过密集聚合参考图像和基准图像中局部区域的相似性,产生局部一致的特征。
  3. 研究贡献

    • 他们是第一个研究结直肠组织图像中少样本生成的团队。
    • 通过广泛的定性、定量和专家(病理学家)评估,对其提出的方法进行评估。
  4. 评估结果

    • 在专家评估中,病理学家仅在55%的时间内能够区分XM-GAN生成的组织图像和真实图像。
    • 利用生成的图像作为数据增强,解决少样本组织图像分类任务,在平均准确率方面取得了4.4%的提升。

方法


Fig. 1 : XM-GAN由一个CNN编码器、一个基于Transformer的可控融合块(CFB)和一个用于组织图像生成的CNN解码器组成。对于K-shot设置,一个共享编码器 F E F_E FE接受一个基准组织图像 x b x^b xb 以及 K − 1 K-1 K−1 个参考组织图像 x i r e f i = 1 K − 1 {x^{ref}i}^{K-1}{i=1} xirefi=1K−1,分别输出视觉特征 h b h^b hb 和 h i r e f h^{ref}_i hiref。在CFB中,一个映射网络计算元权重,用于在交叉注意力期间生成特征重新加权的调制权重。交叉注意力得到的特征 f i f_i fi 被融合并输入到解码器 (FD) 中,生成一幅图像 x ^ \hat{x} x^。


z z z为噪声, α \alpha α为控制参数

实验结果

相关推荐
Pyeako2 小时前
深度学习--CUDA安装配置、pytorch库、torchvision库、torchaudio库安装
人工智能·pytorch·python·深度学习·gpu·cuda
Hello.Reader2 小时前
Flink ML 二分类评估器 BinaryClassificationEvaluator AUC、PR-AUC、KS 一次搞懂
大数据·分类·flink
无人装备硬件开发爱好者2 小时前
AI 辅助程序设计的趋势与范式转移:编码、审核、测试全流程深度解析
大数据·人工智能·架构·核心竞争力重构
iconball2 小时前
个人用云计算学习笔记 --30 华为云存储云服务
运维·笔记·学习·华为云·云计算
趁月色小酌***2 小时前
星盾护航 + AI 协同:鸿蒙 6.0 金融支付安全场景从 0 到 1 实战闯关
人工智能·金融·harmonyos
Hello.Reader2 小时前
Flink ML K-Means 离线聚类 + 在线增量聚类(mini-batch + decayFactor)
大数据·分类·flink
l1t2 小时前
DeepSeek对利用DuckDB求解Advent of Code 2021第9题“烟雾盆地”第二部分SQL的分析
数据库·人工智能·sql·递归·duckdb·deepseek·cte
im_AMBER2 小时前
数据结构 15 【复习】树和二叉树小结 | 图算法 | 拓扑排序 | AOE 网
数据结构·笔记·学习·算法·图论
草莓熊Lotso2 小时前
技术深耕,破局成长:我的2025年度技术创作之路
大数据·开发语言·c++·人工智能·年度总结
小龙2 小时前
【学习笔记】通过准确率/精确率/召回率/F1分数判断模型效果+数据可视化实操
人工智能·笔记·学习·评价指标·大模型指标