吴恩达2022机器学习专项课程(一)7.3 逻辑回归的梯度下降 & 实验:逻辑回归的梯度下降(C1_W3_Lab06)

问题预览/关键词

逻辑回归的梯度下降算法公式

和多元线性回归一样,有几个特征,就要同时计算几个wj。

计算梯度下降的导数项

逻辑回归和线性回归的梯度下降算法区别

从梯度下降算法的形式上看,似乎没有区别。但是用于计算的f(x)函数不同,因此它们是不同的算法。

逻辑回归和线性回归在梯度下降算法的通用之处

检测梯度下降收敛

检测梯度下降收敛的方法一致,详见5.7(检测梯度下降是否收敛)。

向量化操作

都可以向量化操作,详见课后实验代码。

特征缩放

都可以使用特征缩放,加快逻辑回归的梯度下降。

实验

创建训练集并绘制散点图

计算梯度下降的导数项

  • 公式
  • 计算过程解析详见第二周课后实验的Lab02。
  • 调用函数,执行一次梯度下降。

运行梯度下降

  • 公式
  • 根据公式编写函数
  • 调用函数,计算出w,b。

根据w,b构建决策边界

决策边界能够很好的将训练集的数据分类,证明计算出的w,b很合适。

可视化理解成本函数和梯度下降迭代(单特征)

  • 点击右上方等高线图,可以修改w,b,然后点击右下角的橘色按钮运行梯度下降,观察四张图的变化。
  • w,b离等高线图越远,模型预测效果越差,因此左上方的逻辑回归模型对于每个训练集数据的损失越大。

总结

本节主要讲述了如何计算逻辑回归的梯度下降,并演示了如何用Python实现。逻辑回归和线性回归的梯度下降算法很相似,但因为它们的f(x)不同,因此也是不同的算法。

相关推荐
深度学习机器11 小时前
OCRFlux-3B:开源 OCR + LLM 模型的新标杆,支持跨页表格合并
人工智能·机器学习·语言模型·ocr
大千AI助手12 小时前
TinyBERT:知识蒸馏驱动的BERT压缩革命 | 模型小7倍、推理快9倍的轻量化引擎
人工智能·深度学习·机器学习·自然语言处理·bert·蒸馏·tinybert
Ao00000013 小时前
脑电分析入门指南:信号处理、特征提取与机器学习
人工智能·机器学习·信号处理
胖哥真不错14 小时前
基于MATLAB的Lasso回归的数据回归预测方法应用
机器学习·matlab·项目实战·lasso回归
CH3_CH2_CHO15 小时前
DAY01:【ML 第一弹】机器学习概述
人工智能·机器学习
张德锋16 小时前
Pytorch实现运动鞋品牌识别
机器学习
Hao想睡觉17 小时前
机器学习之逻辑回归和k-means算法(六)
人工智能·算法·机器学习·逻辑回归
SoaringPigeon18 小时前
端到端自动驾驶:挑战与前沿
人工智能·机器学习·自动驾驶
机器学习之心HML20 小时前
分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比
支持向量机·matlab·分类·kpca-issa-svm
平和男人杨争争20 小时前
机器学习11——支持向量机上
人工智能·机器学习·支持向量机