目录
[力扣题号:96. 不同的二叉搜索树 - 力扣(LeetCode)](#力扣题号:96. 不同的二叉搜索树 - 力扣(LeetCode))
[示例 1:](#示例 1:)
[示例 2:](#示例 2:)
[如果是以 1 为头节点](#如果是以 1 为头节点)
力扣题号:96. 不同的二叉搜索树 - 力扣(LeetCode)
注:下述题目描述和示例均来自力扣
题目描述
给你一个整数 n
,求恰由 n
个节点组成且节点值从 1
到 n
互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
示例 1:
输入:n = 3
输出:5
示例 2:
输入:n = 1
输出:1
提示:
1 <= n <= 19
思路
如果我们通过观察就可以发现以下的规律。
在讲述这个规律之前,我们先说一下什么是二叉搜索树
什么是二叉搜索树
二叉搜索树(Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有以下性质的二叉树:
- 如果它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 如果它的右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树。
二叉搜索树的特性使得它在查找、插入、删除操作中表现出良好的效率,这些操作在平均和最好的情况下,时间复杂度可以达到 O(log n)。因此,二叉搜索树被广泛用作高效查找结构。
发现规律
我们假设我们的二叉搜索树的有三个节点,分别是 1,2,3, 当然了,这里只是为了清楚的解释这个问题,你这里的节点是1000,20000,30000000,都可以,只要是不一样大就行了。
我们这里设树节点的数量为n,
当n为1和n为2时
我们二叉搜索树的类型有如下图所示:
当输入的n为3时
如果是以 1 为头节点
那么右子树的分布肯定就和n为2时的分布就是一样的了。如下图所示:
如果是以2为头节点
那么左右子树的分布就都和n为1的情况相似了,如下图所示:
如果是以3为头节点
那么左子树的布局和n为2的情况仍然一致,如下图所示:
发现
其实n为3这个情况的每一种情况好像都可以由n为1和n为2,这两种情况都推出来。那么这层关系该如何的利用起来呢。
那如果头节点为1的时候,情况就是,左子树0节点×右子树2节点
那如果头节点为2的时候,情况就是,左子树1节点×右子树1节点
那如果头节点为3的时候,情况就是,左子树2节点×右子树0节点
根据上面的推导,那么我们这里的dp[3]与dp[2],dp[1],dp[0]的关系就如下公式:
amazing~~~ 酱紫就可以动态规划了
动态规划五部曲
(1)dp数组的下标及其含义
这里我们是要求解当节点数是n的时候的,不同的二叉搜索树的数量,因此我们这里的
,就是n=i时候的二叉搜索树的种类数量。
(2)确定递推公式
我们再来思考一下,这是一个搜索二叉树对吧,我们的dp[i]是由以1为头结点的情况,以2为头结点的情况,以3为头结点的情况一起求出来的。
如果我的头结点现在是 j ,那么左子树就有j - 1 个节点,因为这是二叉搜索树,那么右子树就有 i - j个节点。
那么根据刚才的结论我们也可以得出这样的递推公式如下(当有i个节点,头结点是j的时候):
(3)初始化递推数组
根据上面的推导,我们的递推数组推到n为3的时候就可以了,如下所示:
(4)确定遍历顺序
那肯定是从小了往大遍历了。这还说啥了
(5)根据题意推出dp数组对照
当n=10的时候如下所示:
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796]
动态规划代码实现
java
import java.util.Arrays;
public class text {
public static void main(String[] args) {
int res = numTrees(10);
System.out.println(res);
}
public static int numTrees(int n) {
// 如果是3以及一下的数,直接输出
if(n <= 3){
if(n == 1){
return 1;
}else if(n == 2){
return 2;
}else{
return 5;
}
}
// new 出dp数组
int[] dp = new int[n + 1];
// 初始化dp数组
// 这里一定要把dp[0]初始化为1,这是很重要的
dp[0]=1;
dp[1]=1;
dp[2]=2;
dp[3]=5;
for(int i = 4;i <= n;i++){
for(int j = 1;j <= i; j++){
dp[i] += dp[j-1]*dp[i-j];
}
}
// 打印一下dp数组的值,也可以不打印,这里只是为了方便理解。
System.out.println(Arrays.toString(dp));
return dp[n];
}
}
这样之后直接打败了全世界的人。
代码实现(卡塔兰数)
在看了力扣的题解之后发现这其实还是一个数学方法。然后我就查了一查资料。
卡塔兰数
卡塔兰数是一种数学序列,在组合数学中经常出现,并以比利时数学家欧仁·卡塔兰(Eugène Charles Catalan)得名。
卡塔兰数序列的公式为:
它出现在各种计数问题中,例如:
- 计算有效的括号匹配序列数量
- 计算在笛卡尔平面上从(0, 0)到(n, n)的路径数量,且路径不越过y=x线
- 计算具有n+1个叶子节点的满二叉树数量,等等。
例如,前几个卡塔兰数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...
实际上,我们这个问题是卡塔兰数的一个典型应用。对于含有n个节点的二叉搜索树(BST),种类的数量是第n个卡塔兰数。
该问题可以被视为一个计数问题:在每个节点数上,我们都要计算所有合法的二叉搜索树。对于某个给定的节点数n,我们可以将每个数i (0 <= i < n)都试一遍作为根节点,然后递归地计算作为左子树的i个节点和作为右子树的n-i-1个节点可以形成的所有合法BST的数量。之后把它们相乘即可。
所以,根据它的公式我们可以直接得出答案了。
卡塔兰数代码实现
java
class Solution {
public int numTrees(int n) {
int C = 1;
for(int i = 0; i < n; i++){
C = C*2*(2*i+1)/(i+2);
}
return C;
}
}
好好好 ,你敢写成这样是吧,你完啦
直接被制裁,那就用long
java
class Solution {
public int numTrees(int n) {
long C = 1;
for(int i = 0; i < n; i++){
C = C*2*(2*i+1)/(i+2);
}
return (int)C;
}
}
这也没啥提升啊,废了,我最爱的数学方法
总结
看似我们在学习动态规划的题目,但是一不小心又学习了一个数学知识,真的是a。