Pytorch基础:torch.load_state_dict()方法在加载时不会检查类型

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


笔者在使用torch.nn.module的load_state_dict中出现了一个问题,一个被注册的张量在加载后居然没有变化,一开始以为是加载出现了问题,但发现其他参数加载成功,思索后发现是注册的张量的类型是整型而checkpoint中保存为浮点数类型,恰好注册时的默认值给的是0,而checkpoint中的浮点数又在0到1之间,因此出现了这个令人困惑的bug。

下面首先复现这个bug。

import torch
import torch.nn as nn

# 定义一个简单的线性模型,参数类型为整数
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.register_buffer('test', torch.tensor(0)) # 注册一个整型张量

# 创建一个简单模型实例
model = SimpleModel()

# 创建一个浮点数作为参数
float_parameter = torch.tensor(0.6)

# 将注册名指向另一个浮点型张量
model.test = float_parameter

# 保存模型
torch.save(model.state_dict(), 'model.pth')

# 直接使用原模型加载
checkpoint = torch.load('model.pth')
model.load_state_dict(checkpoint)

# 打印加载后的参数
print(model.test)

# 直接使用新模型加载
model_1 = SimpleModel()
model_1.load_state_dict(checkpoint)

# 打印加载后的参数
print(model_1.test)

输出:
tensor(0.6000)
tensor(0)

可以看到,当模型中注册的名字(test),指向了一个类型不符的张量后,并不会导致浮点型张量被截断为整型,这是因为此处是直接使用赋值号=,使名字指向了另一个张量。

但使用load_state_dict()方法与使用赋值号是不同的,load_state_dict()方法的实现中,调用了_load_from_state_dict()方法,其中调用了copy_()方法,进行了原位(in-place)数据替换,这可能会进行截断,下面是原位替换的一个例子。

python 复制代码
import torch

# 创建两个张量
a = torch.tensor([[1, 2], [3, 4]])
b = torch.tensor([[5.1, 6.1], [7.1, 8.1]])

# 查看张量对象的id
print(id(a))
print(id(b))

# 查看底层存储的内存地址
print(a.storage().data_ptr())
print(b.storage().data_ptr())

# 将张量 b 中的值复制到张量 a 中
a.copy_(b)

# 打印复制后的结果
print(a)

# 查看张量对象的id
print(id(a))
print(id(b))

# 查看底层存储的内存地址
print(a.storage().data_ptr())
print(b.storage().data_ptr())
python 复制代码
输出:
2604425272672
2604426953808  
2604511348096  
2602930352832  
tensor([[5, 6],
        [7, 8]])
2604425272672
2604426953808
2604511348096
2602930352832

在保存了模型的状态字典后,使用load_state_dict()方法加载后,也不会有任何截断问题,因为对于原模型而言,名字test指向的是一个浮点型张量,此时原位替换,类型吻合。但是对于一个新的模型,此时的test指向的是一个整型张量,此时原位替换,会发生截断。

因此,在注册一个张量时,需要确保其在注册时和保存时的类型吻合,此处除了指形状,还有类型,否则可能会出现意想不到的bug。

相关推荐
python算法(魔法师版)13 分钟前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子102434 分钟前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui38 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20252 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥2 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Mason Lin2 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客2 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
云空3 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代3 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊84 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习