pymilvus执行多向量搜索

pymilvus执行多向量搜索

从 Milvus 2.4 开始,引入了多向量支持和混合搜索框架,单个collection可以支持10个向量字段。不同的向量字段可以表示不同的方面、不同的embedding模型甚至表征同一实体的不同数据模态。该功能在综合搜索场景中特别有用,例如根据图片、语音、指纹等各种属性来识别向量库中最相似的人。

多向量搜索支持在多个向量字段上执行搜索请求,并使用重排名策略(例如RRF和加权评分)组合结果。

客户端pymilvus需要2.4版本。

准备数据

集合hello_milvus有2个向量字段embeddings1、embeddings2

创建多个 AnnSearchRequest 实例

每个AnnSearchRequest代表指定向量字段上的单个搜索请求。

以下示例创建两个AnnSearchRequest实例对两个向量字段执行单独的相似性搜索。

go 复制代码
query_vector1 = [[0.9425935745239258,0.7893211245536804,0.6682707071304321,0.6769697070121765,0.9508556127548218]]

search_param_1 = {
    "data": query_vector1, # Query vector
    "anns_field": "embeddings1", # Vector field name
    "param": {
        "metric_type": "L2", # This parameter value must be identical to the one used in the collection schema
        "params": {"nprobe": 10}
    },
    "limit": 2 # Number of search results to return in this AnnSearchRequest
}
request_1 = AnnSearchRequest(**search_param_1)

query_vector2 = [[0.7958434224128723,0.18576304614543915,0.650543212890625,0.3026141822338104,0.7158203125]]
search_param_2 = {
    "data": query_vector2, # Query vector
    "anns_field": "embeddings2", # Vector field name
    "param": {
        "metric_type": "L2", # This parameter value must be identical to the one used in the collection schema
        "params": {"nprobe": 10}
    },
    "limit": 2 # Number of search results to return in this AnnSearchRequest
}
request_2 = AnnSearchRequest(**search_param_2)

reqs = [request_1, request_2]

配置重排名策略

创建AnnSearchRequest实例后,配置重排名策略以组合结果并重新排名。目前有两个选项:WeightedRanker和RRFRanker。

go 复制代码
from pymilvus import WeightedRanker
rerank = WeightedRanker(0.8, 0.2)

执行混合搜索

使用hybrid_search()方法执行多向量搜索。

go 复制代码
from pymilvus import (
    connections,
    Collection,
    AnnSearchRequest,
    WeightedRanker
)

collection_name = "hello_milvus"
host = "192.168.230.71"
port = 19530
username = ""
password = ""


query_vector1 = [[0.9425935745239258,0.7893211245536804,0.6682707071304321,0.6769697070121765,0.9508556127548218]]

search_param_1 = {
    "data": query_vector1, # Query vector
    "anns_field": "embeddings1", # Vector field name
    "param": {
        "metric_type": "L2", # This parameter value must be identical to the one used in the collection schema
        "params": {"nprobe": 10}
    },
    "limit": 2 # Number of search results to return in this AnnSearchRequest
}
request_1 = AnnSearchRequest(**search_param_1)

query_vector2 = [[0.7958434224128723,0.18576304614543915,0.650543212890625,0.3026141822338104,0.7158203125]]
search_param_2 = {
    "data": query_vector2, # Query vector
    "anns_field": "embeddings2", # Vector field name
    "param": {
        "metric_type": "L2", # This parameter value must be identical to the one used in the collection schema
        "params": {"nprobe": 10}
    },
    "limit": 2 # Number of search results to return in this AnnSearchRequest
}
request_2 = AnnSearchRequest(**search_param_2)

reqs = [request_1, request_2]

rerank = WeightedRanker(0.8, 0.2)

print("start connecting to Milvus")
connections.connect("default", host=host, port=port,user=username,password=password)
coll = Collection(collection_name, consistency_level="Bounded")

res = coll.hybrid_search(
    reqs, # List of AnnSearchRequests created in step 1
    rerank, # Reranking strategy specified in step 2
    output_fields=['pk'],
    limit=2 # Number of final search results to return
)

print(res)

返回结果:

shell 复制代码
['[
"id: 0, distance: 1.0, entity: {'pk': 0}", 
"id: 568, distance: 0.7705678939819336, entity: {'pk': 568}"
]']
相关推荐
yu41062138 分钟前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995203 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681654 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..4 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能4 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航5 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux5 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI5 小时前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison5 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号5 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习