机器学习每周挑战——百思买数据

最近由于比赛,断更了好久,从五一开始不会再断更了。这个每周挑战我分析的较为简单,有兴趣的可以将数据集下载下来试着分析一下,又不会的我们可以讨论一下。

这是数据集:

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts.charts import Bar
import plotly.express as px


df = pd.read_csv("Best Buy products.csv")
pd.set_option("display.max_columns",1000)
pd.set_option("display.max_rows",1000)

先导入我们所需要用到的库,然后分析数据集

复制代码
# \字段   说明
# url   链接
# product_id    产品ID
# title 标题
# images    图片链接
# final_price   最终价格
# currency  货币
# discount  折扣
# initial_price 初始价格
# offer_price   促销价格
# root_category 品类
# breadcrumbs   导航栏
# release_date  发布日期
# esrb_rating   ESRB评级("E for Everyone"(适合所有人)、"T for Teen"(适合青少年)、"M for Mature"(适合成年人)等等)
# rating    评分
# reviews_count 评价数量
# questions_count   提问数量
# hot_offer 优惠
# open_box  打开过但未使用的商品(这些商品通常是退货、展示品或者被取消订单的商品。虽然它们可能已经被打开过,但它们通常处于完好状态,并且经过了检查和测试以确保其功能正常。这些商品通常以更低的价格销售,因为它们已经不再是全新的商品,但仍然提供一定程度的折扣。)
# availability  商品可用性(即该商品当前是否可供购买:有货;库存有限;缺货;即将上市;预购)
# you_maight_also_need  你可能还需要
# variations    产品配置选项
# highlights    产品亮点
# product_description   产品描述
# features_summary  功能总结
# features  功能特性
# whats_included    包含的配件
# q_a   用户问答
# product_specifications    产品参数
# amount_of_stars   获得的星数
# customer_images   用户提供的照片
# customers_ultimately_bought   用户最终下单的产品
# deals_on_realated_items   相关其他商品的优惠或特价优惠
# frequently_bought_with    通常一起搭配购买的产品
# recommend_percentage  推荐指数

上面是关于字段的说明,由于这种数据属于电商类型的数据,我们一般会分析评分,折扣,成交价格等特征与交易数量之间的关系,我们还可以从用户回答来做文本分析等来分析商品的好坏,预测交易数量等,这里我就不进行分析了,感兴趣的可以试一试,我后面会更新电商评论的文本类型的分析。

复制代码
# 促销策略分析
df['final_price'] = df['final_price'].str.replace('$','').str.replace(',','').astype(float)
df['discount'] = df['discount'].str.replace('Save','').str.replace(',','').str.replace('$','').astype(float)
df['discount'] = df['discount'].fillna(0)

# print(df.info())
plt.figure(figsize=(10,8))
final_price = df['final_price'].value_counts().reset_index()
plt.bar(final_price['final_price'][10], final_price['count'][10], color='red', label='final_price')

plt.figure(figsize=(10,8))
discount_price = df['discount'].value_counts().reset_index()
plt.plot(discount_price['discount'], discount_price['count'], color='blue', label='discount_price')

bin = [0,1,2,3,4,5]
label = [1,2,3,4,5]
df['rating'] = pd.cut(df['rating'],bins=bin,labels=label)
sns.countplot(x=df['rating'],color='Blue',dodge=False)
plt.title("评分数据")
plt.tight_layout()
plt.show()

root_category_counts = df['root_category'].value_counts().reset_index()
# print(root_category_counts)
fig = px.bar(root_category_counts,
             x='count', y='root_category',
             orientation='h',
             title='产品分类排行榜',
             labels={'count': '数量', 'root_category': '种类名称'})
fig.update_layout(yaxis_categoryorder='total ascending')  # 将类别按产品数量升序排列
# 更新字体样式
fig.update_layout(
    template="plotly_white",
    font=dict(
        size=14,
        color="#000000"
    )
)
fig.show()

这里我绘制了折扣和评分之间的关系图,从上面可以看出好的商品是不打折的,就像旭旭宝宝带的货,只便宜一块钱。最后我绘制了各个商品的销售数据。

这篇每周挑战确实简陋了不少,大家如果对电商数据比较感兴趣,后面我在完善一下这篇文章

相关推荐
胡伯来了几秒前
16 Transformers - 使用大语言模型
人工智能·语言模型·自然语言处理
liliangcsdn26 分钟前
LLM MoE 形式化探索
大数据·人工智能
新智元35 分钟前
硅谷青睐的中国模型更新了!一觉醒来,直接套壳
人工智能·openai
机器之心35 分钟前
无需再训练微调,一个辅助系统让GPT-5.2准确率飙到创纪录的75%
人工智能·openai
科技云报道36 分钟前
科技云报到:2026网络安全六大新趋势:AI重构攻防,信任成为新防线
人工智能·科技·web安全
机器之心37 分钟前
微软定目标:2030年,彻底删除C、C++代码,换成Rust
人工智能·openai
新智元39 分钟前
超越谷歌,全球第一!上交 AI 科学家王者归来,登顶 OpenAI MLE-bench
人工智能·openai
北京耐用通信1 小时前
告别“蜘蛛网”接线!耐达讯自动化PROFIBUS 三路集线器让气缸布线“一拖三”的神操作
人工智能·物联网·网络协议·自动化·信息与通信
Coder_Boy_1 小时前
基于DDD+Spring Boot 3.2+LangChain4j构建企业级智能客服系统
java·人工智能·spring boot·后端
Salt_07281 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn