机器学习的指标评价

之前在学校的小发明制作中,在终期答辩的时候,虽然整个项目的流程都答的很流畅。

在老师提问的过程中,当老师问我recall,precision,accuracy等指标是如何计算的,又能够表示模型的哪方面指标做得好。我听到这个问题的时候,就有点懵,因为我只知道,这些指标越接近1就代表模型越好,其他具体指哪方面好,我还是不知道,于是乎,在答辩完的下午,我就赶紧到图书馆,想把这一篇博客整理出来。

1,accuracy 准确率

准确率是衡量模型在所有样本中

(TP+TN)/(TP + FP + TN + FN)

通俗: 所有样本中预测正确的比例

2,精确率

精确率指的是模型正确预测为正例的样本与所有被分类为正例的比例(这个正分裂是模型判断的)

TP/(TP+FP)

通俗: 你认为正确的样本中预测正确的比例

3,召回率

模型成功预测出的正例样本占实际为正样本的比例

TP/(TP+FN)

正样本中有多少是被真正找出来的

4,F1 score

指的是精确率和召回率的调回平均值,综合考虑了模型的准确性和覆盖率。适合于不平衡类别的情况

F1 score = 2*(精确率*召回率)/(精确率+召回率)

TP (true positive) 真正例 即模型正确将正比例预测为正例的比例

FP(false positive)假正例 即模型错误地将负例预测为正例的比例

TN(true negative)真负例 即模型正确地将负例预测为负例的比例

FN(false negative)假负例 即模型错误地将正例判断为负例的比例

在混淆矩阵中具象化表示

相关推荐
道可云8 分钟前
道可云人工智能每日资讯|南宁市公布第二批“人工智能+制造”应用场景“机会清单”和“能力清单”
人工智能·制造
ai_top_trends10 分钟前
不同 AI 生成 2026 年工作计划 PPT 的使用门槛对比
人工智能·python·powerpoint
人工智能AI技术17 分钟前
开源大模型选型指南:从LLaMA3到文心ERNIE,实战适配不同业务场景
人工智能
TOWE technology18 分钟前
聚焦价值 重塑增长
大数据·人工智能·企业
老顾聊技术19 分钟前
“Anthropic 最新发布的 AI Skills:赋能任务自动化与跨领域应用“
运维·人工智能·自动化
AI科技星22 分钟前
时空几何:张祥前统一场论20核心公式深度总结
人工智能·线性代数·算法·机器学习·生活
Coovally AI模型快速验证40 分钟前
仅192万参数的目标检测模型,Micro-YOLO如何做到目标检测精度与效率兼得
人工智能·神经网络·yolo·目标检测·计算机视觉·目标跟踪·自然语言处理
BOB-wangbaohai1 小时前
软考-系统架构师-未来信息综合技术(一)
人工智能·软考·系统架构设计师
愚公搬代码1 小时前
【愚公系列】《AI+直播营销》024-直播平台选择与引流方法(直播平台的八大引流方法)
人工智能
金智维科技官方1 小时前
安全稳定,是企业部署智能体的基础
人工智能·安全·ai·ai agent·智能体·数字员工