机器学习的指标评价

之前在学校的小发明制作中,在终期答辩的时候,虽然整个项目的流程都答的很流畅。

在老师提问的过程中,当老师问我recall,precision,accuracy等指标是如何计算的,又能够表示模型的哪方面指标做得好。我听到这个问题的时候,就有点懵,因为我只知道,这些指标越接近1就代表模型越好,其他具体指哪方面好,我还是不知道,于是乎,在答辩完的下午,我就赶紧到图书馆,想把这一篇博客整理出来。

1,accuracy 准确率

准确率是衡量模型在所有样本中

(TP+TN)/(TP + FP + TN + FN)

通俗: 所有样本中预测正确的比例

2,精确率

精确率指的是模型正确预测为正例的样本与所有被分类为正例的比例(这个正分裂是模型判断的)

TP/(TP+FP)

通俗: 你认为正确的样本中预测正确的比例

3,召回率

模型成功预测出的正例样本占实际为正样本的比例

TP/(TP+FN)

正样本中有多少是被真正找出来的

4,F1 score

指的是精确率和召回率的调回平均值,综合考虑了模型的准确性和覆盖率。适合于不平衡类别的情况

F1 score = 2*(精确率*召回率)/(精确率+召回率)

TP (true positive) 真正例 即模型正确将正比例预测为正例的比例

FP(false positive)假正例 即模型错误地将负例预测为正例的比例

TN(true negative)真负例 即模型正确地将负例预测为负例的比例

FN(false negative)假负例 即模型错误地将正例判断为负例的比例

在混淆矩阵中具象化表示

相关推荐
蜡笔小新..6 分钟前
从零学习 RL :初识强化学习
人工智能·强化学习·rl
m0_603888718 分钟前
More Images, More Problems A Controlled Analysis of VLM Failure Modes
人工智能·算法·机器学习·ai·论文速览
ICscholar11 分钟前
ROC曲线解读
人工智能·机器学习
丝斯201117 分钟前
AI学习笔记整理(44)——大规模预训练模型数据处理管道Pipeline
人工智能·笔记·学习
向量引擎小橙20 分钟前
Sora开启“世界模拟器”新纪元:谁将定义AI的物理世界?
人工智能
OpenCSG35 分钟前
AgenticOps x CSGHub:企业智能体走向规模化生产的工程底座
大数据·人工智能
weixin_4379881240 分钟前
范式智能获评年度科技创新新锐公司
人工智能·科技
易营宝40 分钟前
高效的跨境电商广告优化系统:易营宝广告投放实操指南
大数据·开发语言·人工智能·php
HyperAI超神经42 分钟前
实现高选择性底物设计,MIT联手哈佛用生成式AI发现全新蛋白酶切割模式
人工智能·深度学习·机器学习·开源·ai编程
液态不合群1 小时前
2026破除技术空转:从范式重构到产业深耕的革新路径
人工智能·低代码·重构