机器学习的指标评价

之前在学校的小发明制作中,在终期答辩的时候,虽然整个项目的流程都答的很流畅。

在老师提问的过程中,当老师问我recall,precision,accuracy等指标是如何计算的,又能够表示模型的哪方面指标做得好。我听到这个问题的时候,就有点懵,因为我只知道,这些指标越接近1就代表模型越好,其他具体指哪方面好,我还是不知道,于是乎,在答辩完的下午,我就赶紧到图书馆,想把这一篇博客整理出来。

1,accuracy 准确率

准确率是衡量模型在所有样本中

(TP+TN)/(TP + FP + TN + FN)

通俗: 所有样本中预测正确的比例

2,精确率

精确率指的是模型正确预测为正例的样本与所有被分类为正例的比例(这个正分裂是模型判断的)

TP/(TP+FP)

通俗: 你认为正确的样本中预测正确的比例

3,召回率

模型成功预测出的正例样本占实际为正样本的比例

TP/(TP+FN)

正样本中有多少是被真正找出来的

4,F1 score

指的是精确率和召回率的调回平均值,综合考虑了模型的准确性和覆盖率。适合于不平衡类别的情况

F1 score = 2*(精确率*召回率)/(精确率+召回率)

TP (true positive) 真正例 即模型正确将正比例预测为正例的比例

FP(false positive)假正例 即模型错误地将负例预测为正例的比例

TN(true negative)真负例 即模型正确地将负例预测为负例的比例

FN(false negative)假负例 即模型错误地将正例判断为负例的比例

在混淆矩阵中具象化表示

相关推荐
BFT白芙堂10 分钟前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊16 分钟前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道26 分钟前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
xwz小王子32 分钟前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya33 分钟前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道34 分钟前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型34 分钟前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道35 分钟前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma36 分钟前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态
weisian15141 分钟前
人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
人工智能·语言模型·自然语言处理