机器学习的指标评价

之前在学校的小发明制作中,在终期答辩的时候,虽然整个项目的流程都答的很流畅。

在老师提问的过程中,当老师问我recall,precision,accuracy等指标是如何计算的,又能够表示模型的哪方面指标做得好。我听到这个问题的时候,就有点懵,因为我只知道,这些指标越接近1就代表模型越好,其他具体指哪方面好,我还是不知道,于是乎,在答辩完的下午,我就赶紧到图书馆,想把这一篇博客整理出来。

1,accuracy 准确率

准确率是衡量模型在所有样本中

(TP+TN)/(TP + FP + TN + FN)

通俗: 所有样本中预测正确的比例

2,精确率

精确率指的是模型正确预测为正例的样本与所有被分类为正例的比例(这个正分裂是模型判断的)

TP/(TP+FP)

通俗: 你认为正确的样本中预测正确的比例

3,召回率

模型成功预测出的正例样本占实际为正样本的比例

TP/(TP+FN)

正样本中有多少是被真正找出来的

4,F1 score

指的是精确率和召回率的调回平均值,综合考虑了模型的准确性和覆盖率。适合于不平衡类别的情况

F1 score = 2*(精确率*召回率)/(精确率+召回率)

TP (true positive) 真正例 即模型正确将正比例预测为正例的比例

FP(false positive)假正例 即模型错误地将负例预测为正例的比例

TN(true negative)真负例 即模型正确地将负例预测为负例的比例

FN(false negative)假负例 即模型错误地将正例判断为负例的比例

在混淆矩阵中具象化表示

相关推荐
GISer_Jing9 分钟前
神经网络初学总结(一)
人工智能·深度学习·神经网络
szxinmai主板定制专家17 分钟前
【国产NI替代】基于A7 FPGA+AI的16振动(16bits)终端PCIE数据采集板卡
人工智能·fpga开发
千天夜37 分钟前
多源多点路径规划:基于启发式动态生成树算法的实现
算法·机器学习·动态规划
数据分析能量站1 小时前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%1 小时前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
szxinmai主板定制专家1 小时前
【NI国产替代】基于国产FPGA+全志T3的全国产16振动+2转速(24bits)高精度终端采集板卡
人工智能·fpga开发
YangJZ_ByteMaster1 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
Anlici1 小时前
模型训练与数据分析
人工智能·机器学习
余~~185381628002 小时前
NFC 碰一碰发视频源码搭建技术详解,支持OEM
开发语言·人工智能·python·音视频
唔皇万睡万万睡2 小时前
五子棋小游戏设计(Matlab)
人工智能·matlab·游戏程序