机器学习的指标评价

之前在学校的小发明制作中,在终期答辩的时候,虽然整个项目的流程都答的很流畅。

在老师提问的过程中,当老师问我recall,precision,accuracy等指标是如何计算的,又能够表示模型的哪方面指标做得好。我听到这个问题的时候,就有点懵,因为我只知道,这些指标越接近1就代表模型越好,其他具体指哪方面好,我还是不知道,于是乎,在答辩完的下午,我就赶紧到图书馆,想把这一篇博客整理出来。

1,accuracy 准确率

准确率是衡量模型在所有样本中

(TP+TN)/(TP + FP + TN + FN)

通俗: 所有样本中预测正确的比例

2,精确率

精确率指的是模型正确预测为正例的样本与所有被分类为正例的比例(这个正分裂是模型判断的)

TP/(TP+FP)

通俗: 你认为正确的样本中预测正确的比例

3,召回率

模型成功预测出的正例样本占实际为正样本的比例

TP/(TP+FN)

正样本中有多少是被真正找出来的

4,F1 score

指的是精确率和召回率的调回平均值,综合考虑了模型的准确性和覆盖率。适合于不平衡类别的情况

F1 score = 2*(精确率*召回率)/(精确率+召回率)

TP (true positive) 真正例 即模型正确将正比例预测为正例的比例

FP(false positive)假正例 即模型错误地将负例预测为正例的比例

TN(true negative)真负例 即模型正确地将负例预测为负例的比例

FN(false negative)假负例 即模型错误地将正例判断为负例的比例

在混淆矩阵中具象化表示

相关推荐
百***35481 分钟前
2026年AI搜索时代的企业认知突围:微盟星启如何重构品牌信息基础设施
人工智能·重构
极智-9963 分钟前
GitHub 热榜项目-日榜精选(2026-02-03)| AI智能体、终端工具、RAG技术等 | claude-mem、99、termux-app等
人工智能·网络安全·github·ai智能体·llm应用·rag技术·torrent工具
跨境卫士苏苏8 分钟前
跨境电商:从“跑量”到“跑赢利润”的一套打法
大数据·人工智能·跨境电商·亚马逊·内容营销
maoku669 分钟前
LLaMA Factory全解析:让大模型“改装”像组装电脑一样简单
人工智能
袋鼠云数栈12 分钟前
让多模态数据真正可用,AI 才能走出 Demo
大数据·人工智能·数据治理·多模态
esmap14 分钟前
技术深度解析:ESMap引擎VS主流数字孪生竞品
人工智能·物联网·3d·编辑器·智慧城市·webgl
鹧鸪云光伏14 分钟前
光伏清洗-AI算法助你找到积尘位置
人工智能·光伏
星河耀银海34 分钟前
AI学习第一站:从感知到认知,AI到底是什么?
人工智能·学习·ai
小鸡吃米…35 分钟前
机器学习 - 堆叠集成(Stacking)
人工智能·python·机器学习
Faker66363aaa40 分钟前
YOLO11改进蚊虫目标检测模型,AttheHead注意力机制提升检测精度
人工智能·目标检测·计算机视觉