【机器学习笔记】第一章绪论

一,一些概念

1.损失函数 ;反映预测结果和实际结果的差异

2.泛化能力 :模型适用于新样本的能力

3.过拟合:模型在训练集上表现很好,但是泛化能力

二,机器学习全流程

其中数据预处理

深度学习:人工神经网络为架构的表征学习,通过神经网络层次化的结构输入逐层进行特征提取和处理。

强化学习:智能体和动态环境之间进行交互以学习策略问题。

相关推荐
一条数据库27 分钟前
AI生成文本检测数据集:基于不平衡数据集(人类94% vs AI 6%)的高效机器学习模型训练,涵盖ChatGPT、Gemini等LLM生成内容
人工智能
山烛1 小时前
OpenCV:图像直方图
人工智能·opencv·计算机视觉·图像直方图
摘星编程1 小时前
AI 帮我写单测:pytest 覆盖率提升 40% 的协作日志
人工智能·pytest·测试驱动开发·代码覆盖率·ai协作开发
荼蘼1 小时前
OpenCV 发票识别全流程:透视变换与轮廓检测详解
人工智能·opencv·计算机视觉
大怪v1 小时前
前端佬:机器学习?我也会啊!😎😎😎手“摸”手教你做个”自动驾驶“~
前端·javascript·机器学习
☼←安于亥时→❦2 小时前
PyTorch 梯度与微积分
人工智能·pytorch·python
mahuifa2 小时前
OpenCV 开发 -- 图像阈值处理
人工智能·opencv·计算机视觉
闲人编程2 小时前
图像去雾算法:从物理模型到深度学习实现
图像处理·人工智能·python·深度学习·算法·计算机视觉·去雾
咔咔学姐kk3 小时前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
Caaacy_YU3 小时前
多模态大模型研究每日简报【2025-09-10】
论文阅读·人工智能·深度学习·机器学习·计算机视觉