python 调用 llama

参考:

https://blog.51cto.com/u_16175437/9317548

方法一:

要在Python中调用Llama.ai模型来生成回答,你可以使用transformers库,它提供了调用不同的预训练模型的接口。以下是一个简单的例子,展示了如何使用transformers库中的pipeline函数来生成回答。

首先,确保安装了transformers库:

csharp 复制代码
pip install transformers

然后,你可以使用以下Python代码来生成回答:

csharp 复制代码
from transformers import pipeline
 
# 创建一个llama.ai的问答生成管道
llama_pipeline = pipeline('text-generation', model='Llama2-7B', tokenizer_name='Llama2-7B')
 
# 用户的问题
question = "Python是一种什么样的语言?"
 
# 生成回答
answer = llama_pipeline(question, max_length=50)[0]['text_generation']
 
# 打印生成的回答
print(answer)

请注意,Llama.ai的模型可能会更新,因此你可能需要检查transformers库的文档以确认使用的模型名称是最新的。此外,max_length参数可以根据你想要生成的回答长度来调整。

方法二:

csharp 复制代码
import llama

def callback(message):
    print(f"Received message: {message}")

def main():
    llama.init()
    llama.set_callback(callback)
    llama.start()

    while True:
        message = input("Enter message to send: ")
        llama.send_message(message)

if __name__ == "__main__":
    main()
相关推荐
java_logo1 天前
LOBE-CHAT Docker 容器化部署指南
运维·docker·语言模型·容器·llama
AI大模型2 天前
手把手教你用LlamaIndex搭建RAG系统,让LLM告别“幻觉”,提升回答质量!
llm·agent·llama
开发者导航10 天前
【开发者导航】轻量可微调且开源的大语言模型家族:LLaMA
语言模型·开源·llama
缘友一世10 天前
借助LLama_Factory工具对大模型进行lora微调
llama
illuspas11 天前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama
herogus丶11 天前
【LLM】LLaMA-Factory 训练模型入门指南
python·ai编程·llama
illuspas11 天前
MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
人工智能·gpt·llama
谏书稀11 天前
LLaMA Factory微调大模型
python·transformer·llama
菠菠萝宝13 天前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
wuningw13 天前
Windows环境下LLaMA-Factory微调模型时“未检测到CUDA环境”
llama