单机多GPU的训练及debug中vscode下launch.json内容设置

1.预配置

Local_rank:当前机子上的第几块GPU。这里设置为-1,后续多线程自动分配显卡。

Cuda_visible_devices:指定分配资源到几块显卡上,这里'0,1,2,3'就是这四张gpu的id。

复制代码
os.environ['LOCAL_RANK'] = '-1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'

2.初始化

其实是一个多线程的过程,开3张GPU就是开了三个进程,每一个进程各自独立。

这块代码就是一个线程:

1-2行:自动获得当前线程gpu的id,并配置到cuda中。

3-4行:初始化分布式训练,nccl是后端通信方式。

因为是单机,init_process_group()中其他不需要了,写多了容易端口冲突报错。

5: 获得当前线程的gpu的id。

6: 不同进程之间的同步,同步后运行后面的程序。

复制代码
gpu = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(gpu)
dist_backend = 'nccl'
torch.distributed.init_process_group(backend=dist_backend)
device_id = torch.distributed.get_rank()
torch.distributed.barrier()

3.模型分配

三个线程每一个线程都有一个模型,将模型分配到当前线程的gpu_id。

broadcast_buffers=False:这里设置缓冲区不同步,

因为在后面每一个epoch结束后用了torch.distributed.barrier()来同步各个进程。

find_unused_parameters=True:减少无用梯度计算。

复制代码
model = model.to(device_id)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device_id], broadcast_buffers=False, find_unused_parameters=True)

4.数据分配

1.创建数据samper

num_replicas=num_tasks:共有三张GPU,三个进程三份副本。

rank=device_id:当前分配的gpu_id。

2.创建dataloader

pin_memory=True:数据转移到GPU中速度就会快一些,吃显存。

num_workers=[3]:加速数据装载,吃内存。

复制代码
num_tasks = torch.distributed.get_world_size()
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=device_id, shuffle=shuffle)
loader = DataLoader(
            dataset,
            batch_size=bs,
            num_workers=[4],
            pin_memory=True,
            sampler=sampler,
            shuffle=shuffle,
            collate_fn=[None],
            drop_last=drop_last,
        )              

5.训练

每训练完一轮迭代同步一下。

复制代码
for e in epochs:
....

   torch.distributed.barrier()

最后,在terminal运行。nproc_per_node=4就是有四张gpu。

复制代码
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py

6.debug的vscode下的launch.json内容

比如我的训练指令为:

python 复制代码
python -m torch.distributed.launch --nproc_per_node=3 --use_env dark.py --sim --experiment dark_img

**注:**其中训练用3张GPU, dark.py 是运行程序,而--sim 和--experiment dark_img是要传入的2个参数,下面的dark.py在darkening文件夹下,darkening文件夹是.vscode的统计文件夹,则完整launch.json内容如下:

python 复制代码
{
 
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Python 调试程序: debug",
            "type": "python",
            "request": "launch",
            "program": "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", 
            "args": [
                "--nproc_per_node=3",
                "--use_env",
                "${workspaceFolder}/darkening/dark.py",
                
                "--sim",
                "--experiment", "dark_img"
            ],
            "console": "integratedTerminal",
            "justMyCode": true,
            "cwd": "${workspaceFolder}",
            
        }

参考:

单机多GPU训练 - 知乎 (zhihu.com)

相关推荐
java1234_小锋2 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras.Model来定义模型
python·深度学习·tensorflow·tensorflow2
Learn Beyond Limits6 分钟前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
java1234_小锋6 分钟前
TensorFlow2 Python深度学习 - 函数式API(Functional API)
python·深度学习·tensorflow·tensorflow2
Y200309167 分钟前
使用 PyTorch 实现 MNIST 手写数字识别
python
马尚来14 分钟前
移动端自动化测试Appium,从入门到项目实战Python版
python
机器学习之心24 分钟前
198种组合算法+优化CNN卷积神经网络+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·shap分析·优化cnn卷积神经网络
天才测试猿26 分钟前
WebUI自动化测试:POM设计模式全解析
自动化测试·软件测试·python·selenium·测试工具·设计模式·测试用例
MonkeyKing_sunyuhua38 分钟前
python线程间怎么通信
android·网络·python
叶楊38 分钟前
PEFT适配器加载
人工智能·深度学习·机器学习
AI街潜水的八角1 小时前
垃圾桶满溢检测和识别2:基于深度学习YOLOv12神经网络实现垃圾桶满溢检测和识别(含训练代码和数据集)
深度学习·神经网络·yolo