LeetCode 198—— 打家劫舍

阅读目录

    • [1. 题目](#1. 题目)
    • [2. 解题思路](#2. 解题思路)
    • [3. 代码实现](#3. 代码实现)

1. 题目

2. 解题思路

此题使用动态规划求解,假设 d p [ i ] [ 0 ] dp[i][0] dp[i][0] 代表不偷窃第 i i i 个房屋可以获得的最高金额,而 d p [ i ] [ 1 ] dp[i][1] dp[i][1] 代表偷窃第 i i i 个房屋可以获得的最高金额。那么转移方程为:

d p [ i + 1 ] [ 0 ] = m a x ( d p [ i ] [ 0 ] , d p [ i ] [ 1 ] ) dp[i+1][0] = max(dp[i][0], dp[i][1]) dp[i+1][0]=max(dp[i][0],dp[i][1])

不偷窃第 i + 1 i+1 i+1 个房屋时,第 i i i 个房屋可以偷也可以不偷,所以取二者的最大值。

d p [ i + 1 ] [ 1 ] = d p [ i ] [ 0 ] + n u m s [ i + 1 ] dp[i+1][1] = dp[i][0] + nums[i+1] dp[i+1][1]=dp[i][0]+nums[i+1]

要偷窃第 i + 1 i+1 i+1 个房屋的话,第 i i i 个房屋一定不可以偷,所以取前一个房间不偷窃可以获得的最大金额再加上当前房屋的价值。

由于 d p [ i + 1 ] dp[i+1] dp[i+1] 只和 d p [ i ] dp[i] dp[i] 有关系,所以,我们只需要两个状态值即可。

时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1).

3. 代码实现

c 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        int stole_value = 0;
        int not_stole_value = 0;
        int max_value = 0;
        for (int i = 0; i < nums.size(); ++i) {
            int temp = not_stole_value;
            not_stole_value = max(stole_value, not_stole_value);
            stole_value = temp + nums[i];
            max_value = max(max_value, stole_value);
        }
        return max_value;
    }
};
相关推荐
NEXT066 分钟前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法
代码游侠39 分钟前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法
想进个大厂43 分钟前
代码随想录day37动态规划part05
算法
sali-tec44 分钟前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
子春一1 小时前
Flutter for OpenHarmony:构建一个 Flutter 四色猜谜游戏,深入解析密码逻辑、反馈算法与经典益智游戏重构
算法·flutter·游戏
人道领域1 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
TracyCoder1232 小时前
LeetCode Hot100(34/100)——98. 验证二叉搜索树
算法·leetcode
A尘埃2 小时前
电信运营商用户分群与精准运营(K-Means聚类)
算法·kmeans·聚类
power 雀儿3 小时前
掩码(Mask)机制 结合 多头自注意力函数
算法
会叫的恐龙3 小时前
C++ 核心知识点汇总(第六日)(字符串)
c++·算法·字符串