探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(二)

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(二)

RoPE(旋转位置编码)

在深入研究 RoPE 之前,了解绝对位置编码和相对编码之间的区别非常重要。

  • 绝对位置编码是添加到标记嵌入中以表示其在句子中的绝对位置的固定向量。因此,它一次处理一个标记。可以将其视为地图上的对(纬度、经度):地球上的每个点都有一个唯一的对。

  • 另一方面,相对位置编码一次处理两个标记,在计算注意力时涉及到:由于注意力机制捕获了两个单词彼此相关的"强度",因此相对位置编码告诉我们注意机制涉及其中的单词之间的距离。因此,给定两个标记,创建一个表示它们距离的向量。

旋转位置编码可以被认为是绝对位置嵌入和相对位置嵌入之间的中间地带,因为每个标记确实具有固定或绝对嵌入值,并与其极坐标形式(相对于向量的旋转)乘以内部点积在二维平面上。

注意力机制中使用的点积是内积的一种,可以通过作为点积的推广。

能否找到注意力机制中使用的两个向量q(查询)和k (键)的内积,该内积仅取决于这两个向量以及它们所代表的标记的相对距离?

可以定义一个如下所示的函数g,它仅取决于两个嵌入向量q和k以及它们的相对距离。

利用欧拉公式, 可以将其写成矩阵形式。

二维空间中的旋转矩阵,因此称为旋转位置嵌入


旋转位置嵌入仅应用于查询和键,而不应用于值。

在注意力机制中,旋转位置嵌入是在向量q和k乘以W矩阵之后应用的,而在普通Transformer中,它们是在之前应用的。

python 复制代码
def precomputed_theta_pos_frequencies(head_dim: int, seq_len: int, device: str, theta: float = 10000.0):
    # As written in the paper, the dimentions o the embedding must be even
    assert head_dim % 2 == 0, "The head_dim must be even"
    # Built the theta parameters
    # According to the formula theta_i = 10000 ^ (-2(i-1)/dim) for i = [1,2,3,..dim/2]
    # Shape: (head_dim / 2)
    theta_numerator = torch.arange(0, head_dim, 2).float()
    # Shape : (head_dim / 2)
    theta = 1.0 / (theta ** (theta_numerator / head_dim)).to(device)
    # Construct the positions (the "m" parameter)
    # shape: (seq_len)
    m = torch.arange(seq_len, device=device)
    # multiply each theta by each position using the outer product
    # shape : (seq_len) outer_product * (head_dim / 2) -> (seq_len, head_dim / 2)
    freq = torch.outer(m, theta).float()
    # we can computer complex numbers in the polar form c = R * exp(i * m * theta), where R = 1 as follow
    # shape: (seq_len, head_dim/2) -> (seq-len, head_dim/2)
    freq_complex = torch.polar(torch.ones_like(freq), freq)
    return freq_complex

def apply_rotary_embeddings(x: torch.Tensor, freq_complex: torch.Tensor, device: str):
    # We transform the each subsequent pair of tokens into a pair of complex numbers
    # shape : (B, seq_len, head_dim) -> (B, seq_len, h, head_dim / 2)
    x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
    # shape : (seq_len, head_dim / 2) -> (1, seq_len, 1, head_dim / 2)
    freq_complex = freq_complex.unsqueeze(0).unsqueeze(2)
    # shape : (B, seq_len, h, head_dim / 2) * (1, seq_len, 1, head_dim / 2) = (B, seq_len, h, head_dim / 2)
    x_rotate = x_complex * freq_complex
    # (B, seq_len, h, head_dim / 2) -> (B, seq_len, h, head_dim/2 ,2)
    x_out = torch.view_as_real(x_rotate)
    # (B, seq_len, h, head_dim/2, 2) -> (B, seq_len, h * head_dim / 2 * 2)
    x_out = x_out.reshape(*x.shape)
    return x_out.type_as(x).to(device)

系列博客

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)
https://duanzhihua.blog.csdn.net/article/details/138208650

相关推荐
m0_603888714 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
三千院本院8 天前
LlaMA_Factory实战微调VL大模型
llama
爱分享的飘哥13 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq14 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn22 天前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
茫茫人海一粒沙22 天前
使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
llama
liliangcsdn24 天前
mac llama_index agent算术式子计算示例
人工智能·python·macos·llama
许愿与你永世安宁25 天前
RAG(检索增强生成)里的文档管理
数据库·人工智能·gpt·oracle·llama·rag
许愿与你永世安宁1 个月前
基于Llama的RAG 3种模型配置方法
人工智能·python·自然语言处理·json·github·llama·faiss
至善迎风1 个月前
本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
docker·容器·llama·kimi