MLP手写数字识别(1)-MNIST数据集下载与可视化(tensorflow)

1.下载与查看MNIST数据集

python 复制代码
from keras.datasets import mnist

(x_train_image,y_train_label),(x_test_image,y_test_label) = mnist.load_data()
print("train images:",x_train_image.shape)
print("test images:",x_test_image.shape)
print("train labels:",y_train_label.shape)
print("test labels:",y_test_label.shape)

代码下载数据集后,会将数据保存在四个集合中,分别为:

  • x_train_image:保存训练数字图像,共60000个。
  • y_train_label:保存训练数字图像的正确数字,共60000个。
  • x_test_image:保存测试数字图像,共10000个。
  • y_test_label:保存测试数字图像的正确数字,共10000个。
  • 数据保存位置'~/.keras/datasets/'+path

2.图像绘制

image是一副28*28的灰度图片,数组中每一个单元的数值在0~255之间。其中0表示白色,255表示黑色。

python 复制代码
import matplotlib.pyplot as plt
def plot_image(image):
    fig = plt.gcf()
    fig.set_size_inches(2,2)
    plt.imshow(image,cmap='binary')
    plt.show()
plot_image(x_train_image[0])
print(y_train_label[0])
print(x_train_image[0])

3.绘制多张图像

python 复制代码
def plot_images_lables(images,labels,start_idx,num=5):
    fig = plt.gcf()
    fig.set_size_inches(12,14)
    for i in range(num):
        ax = plt.subplot(1,num,1+i)
        ax.imshow(images[start_idx+i],cmap='binary')
        title = 'label=' + str(labels[start_idx+i])
        ax.set_title(title,fontsize=10)
        ax.set_xticks([])
        ax.set_yticks([])
    plt.show()
plot_images_lables(x_train_image,y_train_label,0,5)
plot_images_lables(x_test_image,y_test_label,0,5)
相关推荐
IT小哥哥呀31 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
汉堡go2 小时前
1、机器学习与深度学习
人工智能·深度学习·机器学习
LiJieNiub3 小时前
基于 PyTorch 实现 MNIST 手写数字识别
pytorch·深度学习·学习
chxin140164 小时前
Transformer注意力机制——动手学深度学习10
pytorch·rnn·深度学习·transformer
jie*4 小时前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
jie*4 小时前
小杰深度学习(sixteen)——视觉-经典神经网络——MobileNetV2
人工智能·python·深度学习·神经网络·tensorflow·numpy·matplotlib
MYX_3094 小时前
第五章 神经网络的优化
pytorch·深度学习·神经网络·学习
TGITCIC4 小时前
有趣的机器学习-利用神经网络来模拟“古龙”写作风格的输出器
人工智能·深度学习·神经网络·ai大模型·模型训练·训练模型·手搓模型
Piink4 小时前
网络模型训练完整代码
人工智能·深度学习·机器学习
淬炼之火6 小时前
基于pycharm和anaconda的yolo简单部署测试
python·深度学习·yolo·pycharm·ultralytics