机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。该算法的基本思想是通过迭代将数据点分配到最近的质心,然后更新质心位置,直到达到收敛条件。

K-均值(K-Means)聚类算法的原理如下:

  1. 初始化:随机选择 K 个数据点作为初始的聚类中心。
  2. 分配数据点到最近的簇:对于每个数据点,计算它与各个聚类中心的距离,并将其分配到距离最近的簇中。
  3. 更新簇中心:对于每个簇,计算该簇中所有数据点的均值,将其作为新的簇中心。
  4. 重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到预设的迭代次数。

K-均值算法通过不断迭代更新簇中心和重新分配数据点的过程,使得簇内数据点的相似度最大化,簇间的相似度最小化。最终,得到 K 个簇,每个簇包含一组相似的数据点。

需要注意的是,K-均值算法属于局部最优算法,初始聚类中心的选择可能会影响最终的聚类结果。因此,通常会多次运行算法并选择效果最好的结果。

算法步骤:

  1. 初始化 K 个质心。
  2. 将每个数据点分配到最近的质心所在的簇。
  3. 更新质心的位置为每个簇中所有数据点的平均值。
  4. 重复步骤 2 和步骤 3,直到质心不再变化为止。

优点:

  1. 简单且易于实现。
  2. 适用于大型数据集。
  3. 能够处理噪声数据。

缺点:

  1. 需要提前确定簇的个数 K。
  2. 对初始质心的选择敏感,可能会陷入局部最优解。
  3. 对异常值和离群点敏感。
  4. 对数据集的初始分布和形状有一定假设,不适用于非凸形状的簇。
相关推荐
北堂飘霜2 分钟前
AI 求职工具评测:简小派 vs Jobscan、Teal 与国内同类
人工智能
糖果罐子♡6 分钟前
在 openEuler 上快速体验 PyTorch 深度学习
人工智能·pytorch·深度学习
周杰伦_Jay7 分钟前
【Conda 完全指南】环境管理+包管理从入门到精通(含实操示例+表格对比)
开发语言·人工智能·微服务·架构·conda
暗碳7 分钟前
ai分析aweme-app.xml,default_config .xml文件
xml·人工智能
凌晨一点的秃头猪8 分钟前
构建视觉词典(visual vocabulary / codebook)
人工智能
PS1232328 分钟前
城市安全建设中的风环境监测解决方案
大数据·人工智能
梯度下降不了班10 分钟前
【mmodel/xDiT】多模态^_^从入门到放弃的学习路径
人工智能·学习·stable diffusion
说私域12 分钟前
基于开源AI大模型AI智能名片S2B2C商城小程序的爆品力构建:兴趣电商生态下的能力解构与实践路径
人工智能·小程序·开源
Ombré_mi13 分钟前
QLoRA微调原理详解
人工智能