机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。该算法的基本思想是通过迭代将数据点分配到最近的质心,然后更新质心位置,直到达到收敛条件。

K-均值(K-Means)聚类算法的原理如下:

  1. 初始化:随机选择 K 个数据点作为初始的聚类中心。
  2. 分配数据点到最近的簇:对于每个数据点,计算它与各个聚类中心的距离,并将其分配到距离最近的簇中。
  3. 更新簇中心:对于每个簇,计算该簇中所有数据点的均值,将其作为新的簇中心。
  4. 重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到预设的迭代次数。

K-均值算法通过不断迭代更新簇中心和重新分配数据点的过程,使得簇内数据点的相似度最大化,簇间的相似度最小化。最终,得到 K 个簇,每个簇包含一组相似的数据点。

需要注意的是,K-均值算法属于局部最优算法,初始聚类中心的选择可能会影响最终的聚类结果。因此,通常会多次运行算法并选择效果最好的结果。

算法步骤:

  1. 初始化 K 个质心。
  2. 将每个数据点分配到最近的质心所在的簇。
  3. 更新质心的位置为每个簇中所有数据点的平均值。
  4. 重复步骤 2 和步骤 3,直到质心不再变化为止。

优点:

  1. 简单且易于实现。
  2. 适用于大型数据集。
  3. 能够处理噪声数据。

缺点:

  1. 需要提前确定簇的个数 K。
  2. 对初始质心的选择敏感,可能会陷入局部最优解。
  3. 对异常值和离群点敏感。
  4. 对数据集的初始分布和形状有一定假设,不适用于非凸形状的簇。
相关推荐
EasyDSS12 分钟前
EasyRTC嵌入式SDK音视频实时通话助力WebRTC技术与智能硬件协同发展
人工智能·音视频
闭月之泪舞1 小时前
OpenCv高阶(十三)——人脸检测
人工智能·opencv·计算机视觉
engchina2 小时前
Spring AI 1.0 GA 正式发布
java·人工智能·spring·spring ai
明似水3 小时前
AI时代新词-AI增强现实(AI - Enhanced Reality)
人工智能·ar
yzx9910137 小时前
RNN 在时序数据处理中的核心作用
人工智能·rnn·深度学习
一点.点8 小时前
李沐动手深度学习(pycharm中运行笔记)——10.多层感知机+从零实现+简介实现
人工智能·笔记·python·深度学习·pycharm
新加坡内哥谈技术8 小时前
Anthropic公司近日发布了两款新一代大型语言模型Claude Opus 4与Claude Sonnet 4
人工智能·语言模型·自然语言处理
硅谷秋水8 小时前
Real2Render2Real:无需动力学仿真或机器人硬件即可扩展机器人数据
人工智能·机器学习·计算机视觉·机器人
Ai墨芯1118 小时前
小样本机器学习再发力!2025再登Nature正刊
人工智能·机器学习