机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。该算法的基本思想是通过迭代将数据点分配到最近的质心,然后更新质心位置,直到达到收敛条件。

K-均值(K-Means)聚类算法的原理如下:

  1. 初始化:随机选择 K 个数据点作为初始的聚类中心。
  2. 分配数据点到最近的簇:对于每个数据点,计算它与各个聚类中心的距离,并将其分配到距离最近的簇中。
  3. 更新簇中心:对于每个簇,计算该簇中所有数据点的均值,将其作为新的簇中心。
  4. 重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到预设的迭代次数。

K-均值算法通过不断迭代更新簇中心和重新分配数据点的过程,使得簇内数据点的相似度最大化,簇间的相似度最小化。最终,得到 K 个簇,每个簇包含一组相似的数据点。

需要注意的是,K-均值算法属于局部最优算法,初始聚类中心的选择可能会影响最终的聚类结果。因此,通常会多次运行算法并选择效果最好的结果。

算法步骤:

  1. 初始化 K 个质心。
  2. 将每个数据点分配到最近的质心所在的簇。
  3. 更新质心的位置为每个簇中所有数据点的平均值。
  4. 重复步骤 2 和步骤 3,直到质心不再变化为止。

优点:

  1. 简单且易于实现。
  2. 适用于大型数据集。
  3. 能够处理噪声数据。

缺点:

  1. 需要提前确定簇的个数 K。
  2. 对初始质心的选择敏感,可能会陷入局部最优解。
  3. 对异常值和离群点敏感。
  4. 对数据集的初始分布和形状有一定假设,不适用于非凸形状的簇。
相关推荐
XIAO·宝4 分钟前
深度学习------YOLOv4
深度学习·yolo·目标跟踪
Lucas555555555 分钟前
多模态RAG进阶:基于GPT-4V+LangGraph的下一代智能体系统完全指南
人工智能
小白狮ww5 分钟前
LiveCC 首个视频解说大模型开源,比赛视频也能轻松拿捏!
人工智能·深度学习·机器学习
hhhdd_20256 分钟前
5 款 PDF 翻译工具深度测评:从格式到免费权限全解析
人工智能·机器学习
小笼包工具箱13 分钟前
2025 年六款 AI 视频转文字工具实测分析:功能与场景适配对比
人工智能·文案提取·提取文案·文案提取工具
字节跳动终端技术35 分钟前
豆包编程能力升级,新增参考图、画板等多元化输入
人工智能
机器之心39 分钟前
DeepSeek的新模型很疯狂:整个AI圈都在研究视觉路线,Karpathy不装了
人工智能·openai
机器之心41 分钟前
Anthropic上线了网页版Claude Code
人工智能·openai
lky不吃香菜42 分钟前
深度学习入门:从“流水线工人”到“变形金刚”的架构漫游指南
人工智能·机器学习
用户5970150440642 分钟前
无人机小游戏
人工智能