使用PyTorch从头实现Transformer

前言

  • 本文使用Pytorch从头实现Transformer,原论文Attention is all you need paper,最佳解读博客,学习视频
  • GitHub项目地址Some-Paper-CN。本项目是译者在学习长时间序列预测、CV、NLP和机器学习过程中精读的一些论文,并对其进行了中文翻译。还有部分最佳示例教程。
  • 如果有帮助到大家,请帮忙点亮Star,也是对译者莫大的鼓励,谢谢啦~

SelfAttention

  • 整篇论文中,最核心的部分就是SelfAttention部分,SelfAttention模块架构图如下。

规范化公式:
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

python 复制代码
class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        # batch_size
        N = query.shape[0]
        value_len, keys_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        values = values.reshape(N, value_len, self.heads, self.head_dim)
        keys = keys.reshape(N, keys_len, self.heads, self.head_dim)
        queries = query.reshape(N, query_len, self.heads, self.head_dim)
        # values, keys, queries shape:(N, seq_len, heads, head_dim)

        values = self.values(values)
        keys = self.keys(keys)
        queries = self.queries(queries)

        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        # queries shape:(N, query_len, heads, heads_dim)
        # keys shape:(N, key_len, heads, heads_dim)
        # energy shape:(N, heads, query_len, key_len)

        if mask is not None:
            energy = energy.masked_fill(mask == 0 ,float("-1e20"))

        attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
        # attention shape:(N, heads, seq_len, seq_len)
        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads*self.head_dim
        )
        # attention shape:(N, heads, query_len, key_len)
        # values shape:(N, values_len, heads, head_dim)
        # after einsum (N, query_len, heads, head_dim) then flatten lash two dimensions

        out = self.fc_out(out)
        return out
  • 请注意values keysqueryLinear层是不带偏置的!
  • 上述代码中,较难理解的是torch.einsum(),爱因斯坦求和约定,nqhd,nkhd->nhqk可以理解为维度是 ( n , q , h , d ) (n,q,h,d) (n,q,h,d)的张量与 ( n , k , h , d ) (n,k,h,d) (n,k,h,d)的张量沿着维度 d d d相乘,得到维度 ( n , q , d , h ) (n,q,d,h) (n,q,d,h)重新排列后变成 ( n , h , q , k ) (n,h,q,k) (n,h,q,k)。
  • 传入mask矩阵是因为每个句子的长度不一样,为了保证维度相同,在长度不足的句子后面使用padding补齐,而padding是不用计算损失的,所以需要mask告诉模型哪些位置需要计算损失。被mask遮掩的地方,被赋予无限小的值,这样在softmax以后概率就几乎为0了。
  • mask这个地方后面也会写到,如果不理解的话,先有这个概念,后面看完代码就会理解了。

TransformerBlock

  • 实现完SelfAttention,开始实现基本模块TransformerBlock,架构图如下。
python 复制代码
class TransformerBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(TransformerBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1 = nn.LayerNorm(embed_size)
        self.norm2 = nn.LayerNorm(embed_size)

        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion * embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion * embed_size, embed_size)
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)
        # attention shape:(N, seq_len, emb_dim)
        x = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out = self.dropout(self.norm2(forward + x))
        return out
  • Feed Forward部分由两层带偏置的Linear层和ReLU激活函数

  • 注意,Norm层是LayerNorm层,不是BatchNorm层。原因主要有:

    • 在进行BatchNorm操作时,同一个batch中的所有样本都会被考虑在内。这意味着一个样本的输出可能会受到同一批次其他样本的影响。然而,我们在处理文本数据时,通常希望每个样本(在此例中,是一个句子或一个句子段落)都是独立的。因此,LayerNorm是一个更好的选择,因为它只对单个样本进行操作。
    • 文本通常不是固定长度的,这就意味着每个batch的大小可能会有所不同。BatchNorm需要固定大小的batch才能正常工作,LayerNorm在这点上更为灵活。
  • forward_expansion是为了扩展embedding的维度,使Feed Forward包含更多参数量。

Encoder

  • 实现完TransformerBlock,就可以实现模型的Encoder部分,模块架构图如下。
python 复制代码
class Encoder(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length
    ):
        super(Encoder, self).__init__()
        self.embed_size = embed_size
        self.device = device
        self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                TransformerBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion
                ) for _ in range(num_layers)
            ]
        )
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        # positions shape:(N, seq_len)
        out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
        # out shape:(N, seq_len, emb_dim)
        for layer in self.layers:
            out = layer(out, out, out, mask)
        return out
  • 为了更好的理解positions并没有按照论文中使用sincos构造,但这一部分并不困难,后面大家有兴趣可以进行替换。

  • positions是为句子的每个字从0开始编号,假设有2个句子,第一个句子有3个字,第二个句子有4个字,即positions = [[0,1,2],[0,1,2,3]]

  • positionsx进入embedding层后相加,然后进入dropout

  • 因为TransformerBlock可能有多个串联,所以使用ModuleList包起来

  • 注意残差连接部分的操作。

DecoderBlock

  • 实现完Encoder部分,整个模型就已经完成一半了,接下来实现Decoder基本单元DecoderBlock,模块架构图如下。
python 复制代码
class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm = nn.LayerNorm(embed_size)
        self.transformer_block = TransformerBlock(
            embed_size, heads, dropout, forward_expansion)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query = self.dropout(self.norm(attention + x))
        out = self.transformer_block(value, key, query, src_mask)
        return out
  • 注意!这里有两个Attention模块,首先输入x要进入Masked Attention得到query,然后与Encoder部分的输出组成新的v,k,q
  • 第二部分是基本单元transformer_block,可以直接调用。
  • 注意残差连接部分即可。

Decoder

  • 实现完Decoder基本单元DecoderBlock后,就可以正式开始实现Decoder部分了,模块架构图如下。
python 复制代码
class Decoder(nn.Module):
    def __init__(
            self,
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
    ):
        super(Decoder, self).__init__()
        self.device = device
        self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
            for _ in range(num_layers)]
        )

        self.fc_out = nn.Linear(embed_size, trg_vocab_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x = self.dropout(self.word_embedding(x) + self.position_embedding(positions))

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out
  • Decoder部分的embedding部分和Encoder部分差不多,word_embeddingposition_embedding相加进入dropout层。
  • 基本单元DecoderBlock会重复多次,用ModuleList包裹。
  • enc_outEncoder部分的输出,变成了valuekey

Transformer

  • 在实现完EncoderDecoder后,就可以实现整个Transformer结构了,架构图如下。
python 复制代码
class Transformer(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            trg_vocab_size,
            src_pad_idx,
            trg_pad_idx,
            embed_size=256,
            num_layers=6,
            forward_expansion=4,
            heads=8,
            dropout=0,
            device='cpu',
            max_length=64
    ):
        super(Transformer, self).__init__()

        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length
        )

        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device = device

    def mask_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        # src_mask shape:(N, 1, 1, src_len)
        return src_mask.to(self.device)

    def mask_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )
        # trg_mask shape:(N, 1, 1, trg_len)
        return trg_mask.to(self.device)

    def forward(self, src, trg):
        src_mask = self.mask_src_mask(src)
        trg_mask = self.mask_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        # enc_src shape:(N, seq_len, emb_dim)
        out = self.decoder(trg, enc_src, src_mask, trg_mask)
        return out
  • 需要注意的是输入的mask构造方法mask_src_mask,和输出的mask构造方法mask_trg_maskmask_src_mask是对输入的padding部分进行maskmask_trg_mask根据输出构建下三角矩阵想象一下,当模型预测第一个字的时候,后面的所有内容都是不可见的,当模型预测第二个字的时候,仅第一个字可见,后面的内容都不可见...

检验

  • 构建完成后,使用一个简单的小例子检验一下模型是否可以正常运行。
python 复制代码
if __name__ == "__main__":
    device = 'cpu'
    # x shape:(N, seq_len)
    x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0],
                      [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(device)
    trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0],
                        [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)

    src_pad_idx = 0
    trg_pad_idx = 0
    src_vocab_size = 10
    trg_vocab_size = 10

    model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx).to(device)
    out = model(x, trg[:, :-1])
    print(out.shape)
  • 输出:(2, 7, 10),完整代码放在GitHub项目Some-Paper-CN中。
相关推荐
Q8137574601 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb5 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb8 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream8 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码16 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深18 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt