数据结构——复杂度(时间,空间)

注:以下用冒泡排序排序数组的统一都是排成升序

冒泡排序代码:

cpp 复制代码
void Bubble_Sort(int* arr, int n)
{
	for (int i = 0; i < n; i++)
	{
		int flag = 0;
		for (int j = 0; j < n - i - 1; j++)
		{
			if (arr[j] > arr[j + 1])
			{
				Swap(&arr[j], &arr[j + 1]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			break;
		}
	}
}

时间复杂度:

0.时间复杂度指的是算法中的基本操作的执行次数

例:

cpp 复制代码
for (int i = 0; i < 10; i++)
{
	for (int j = 0; j < 20; j++)
	{
		printf("haha");
	}
}

该代码的printf执行次数为10 * 20 = 200

递归的时间复杂度计算方式依旧:

例:

cpp 复制代码
int func(int n)
{
	if (n == 1)
	{
		return 1;
	}

	return func(n - 1) * n;
}

func的执行次数为n

1.不论是时间复杂度还是空间复杂度,都取的是最坏的情况

关于最坏的情况的定义:

举个例子:

用冒泡排序排序一个数组(已知该数组为5个元素但具体情况未知),使之有序

那么冒泡排序需要最少排序0次,最多排序10次才能实现该数组有序

那么此时的最坏情况就是10次

2.推倒大O阶的方法:

(1).加法常数通通用1取代

(2).在得到了具体的复杂度表达式之后,只保留该表达式的最高阶项,并将前边的系数改为1

(3).如果没有最高阶项,即得到的具体表达式只有常数,则O(N) = 1

例:

推导出来的具体表达式为 2 * N ^ 2 + N

那么此时的时间复杂度为N ^ 2

而第0点中的第一个例子的时间复杂度是1,第二个是n

3.要想推出具体的时间复杂度,则要用到数学知识,大部分都涉及到的是等差数列求和或等比数列求和

例:

用冒泡排序排列数组元素为N的未知数组,那么用数学分析如下:

按照第一点的最坏情况理论,该数组的

第一个元素想要排列完毕则要经过n - 1重循环

第二个元素想要排列完毕则要经过n - 2重循环

第三个元素想要排列完毕则要经过n - 3重循环

......

倒数第二个元素(即第n - 1个元素)想要排列完毕则要经过n - (n - 1)重循环

那么n - (n - 1) + n - (n - 2)+ ...... + n - 3 + n - 2 + n - 1 即时间复杂度的具体表达式

运用等差数列求和公式得:

(n - 1) * (1 + n - 1) / 2

化简得:(n - 1) * n / 2

用第二点推导方法得:O(N) = n ^ 2

空间复杂度:

4.空间复杂度指的是一个算法在运行时临时占用的存储空间的大小

注:是临时!不包含那些一开始就分配好了的空间

例:

最上边的冒泡排序的空间复杂度就是1,因为他只用了常数次的临时变量,或称为只开辟了常数次的空间,所以按照第2点的推导方法,得冒泡排序的空间复杂度为1

相关推荐
努力努力再努力wz1 小时前
【C++进阶系列】:万字详解智能指针(附模拟实现的源码)
java·linux·c语言·开发语言·数据结构·c++·python
凤年徐1 小时前
【C++】string的模拟实现
c语言·开发语言·c++
敲代码的嘎仔1 小时前
JavaWeb零基础学习Day2——JS & Vue
java·开发语言·前端·javascript·数据结构·学习·算法
yacolex2 小时前
3.3_数据结构和算法复习-栈
数据结构·算法
cookqq3 小时前
MongoDB源码delete分析oplog:从删除链路到核心函数实现
数据结构·数据库·sql·mongodb·nosql
ʚ希希ɞ ྀ3 小时前
用队列实现栈---超全详细解
java·开发语言·数据结构
要一起看日出4 小时前
数据结构-----栈&队列
java·数据结构··队列
迎風吹頭髮4 小时前
UNIX下C语言编程与实践59-UNIX TCP 数据传输:send 与 recv 函数的使用与数据处理
c语言·网络·unix
迎風吹頭髮4 小时前
UNIX下C语言编程与实践55-TCP 协议基础:面向连接的可靠传输机制与三次握手、四次挥手
c语言·网络·unix
Gorgous—l4 小时前
数据结构算法学习:LeetCode热题100-矩阵篇(矩阵置零、螺旋矩阵、旋转图像、搜索二维矩阵 II)
数据结构·学习·算法