Get started with Gemma using KerasNLP实践实验一

Get started with Gemma using KerasNLP

https://www.kaggle.com/code/nilaychauhan/get-started-with-gemma-using-kerasnlp

Step1: Gemma Setup

1.1.Gemma setup

To complete this tutorial, you will first need to complete the setup instructions at Gemma setup. The Gemma setup instructions show you how to do the following:

Gemma models are hosted by Kaggle. To use Gemma, request access on Kaggle:

  • Sign in or register at kaggle.com
  • Open the Gemma model card and select "Request Access"
  • Complete the consent form and accept the terms and conditions

1.2.Open the Gemma model card and select "Request Access"

1.3 上面的页面(Gemma | Kaggle)往下滑到下面:选中New Notebook

1.4 更改notebook临时名称为Get started with Gemma using KerasNLP

1.5 运行本地环境。

python 复制代码
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" 
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session

Step2 Install dependencies

Install keras and KerasNLP

python 复制代码
# Install Keras 3 last. See https://keras.io/getting_started/ for more details.
!pip install -q -U keras-nlp
!pip install -q -U keras>=3
python 复制代码
pip install Wurlitzer

Step3 Import packages

Import Keras and KerasNLP

python 复制代码
import keras
import keras_nlp

Step 4 Selected a backend

Keras is a high-level, multi-framework deep learning API designed for simplicity and ease of use. Keras 3 lets you choose the backend: TensorFlow, JAX, or PyTorch. All three will work for this tutorial.

python 复制代码
import os

os.environ["KERAS_BACKEND"] = "jax"  # Or "tensorflow" or "torch".

Step 5 Create a model

KerasNLP provides implementations of many popular model architectures. In this tutorial, you'll create a model using GemmaCausalLM, an end-to-end Gemma model for causal language modeling. A causal language model predicts the next token based on previous tokens.

Create the model using the from_preset method:

python 复制代码
gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en")

from_preset instantiates the model from a preset architecture and weights. In the code above, the string "gemma_2b_en" specifies the preset architecture: a Gemma model with 2 billion parameters. (A Gemma model with 7 billion parameters is also available. To run the larger model in Colab, you need access to the premium GPUs available in paid plans. Alternatively, you can perform distributed tuning on a Gemma 7B model on Kaggle or Google Cloud.)

Use summary to get more info about the model:

python 复制代码
gemma_lm.summary()

As you can see from the summary, the model has 2.5 billion trainable parameters.

Step 6 Generate text

Now it's time to generate some text! The model has a generate method that generates text based on a prompt. The optional max_length argument specifies the maximum length of the generated sequence.

Try it out with the prompt "What is the meaning of life?".

python 复制代码
gemma_lm.generate("What is the meaning of life?", max_length=64)

Try calling generate again with a different prompt.

python 复制代码
gemma_lm.generate("How does the brain work?", max_length=64)

If you're running on JAX or TensorFlow backends, you'll notice that the second generate call returns nearly instantly. This is because each call to generate for a given batch size and max_length is compiled with XLA. The first run is expensive, but subsequent runs are much faster.

linkcode

You can also provide batched prompts using a list as input:

python 复制代码
gemma_lm.generate(
    ["What is the meaning of life?",
     "How does the brain work?"],
    max_length=64)

Step7 Optional: Try a different sampler

You can control the generation strategy for GemmaCausalLM by setting the sampler argument on compile(). By default, "greedy" sampling will be used.

As an experiment, try setting a "top_k" strategy:

python 复制代码
gemma_lm.compile(sampler="top_k")
gemma_lm.generate("What is the meaning of life?", max_length=64)

While the default greedy algorithm always picks the token with the largest probability, the top-K algorithm randomly picks the next token from the tokens of top K probability.

You don't have to specify a sampler, and you can ignore the last code snippet if it's not helpful to your use case. If you'd like learn more about the available samplers, see Samplers.

倘若您觉得我写的好,那么请您动动你的小手粉一下我,你的小小鼓励会带来更大的动力。Thanks.

相关推荐
__Benco3 分钟前
OpenHarmony平台驱动使用(十五),SPI
人工智能·驱动开发·harmonyos
Listennnn4 分钟前
AI系统的构建
人工智能·系统架构
十五年专注C++开发7 分钟前
设计模式之单例模式(二): 心得体会
开发语言·c++·单例模式·设计模式
新智元8 分钟前
全球 30 名顶尖数学家秘密集会围剿 AI,当场破防!惊呼已接近数学天才
人工智能·openai
nenchoumi31198 分钟前
AirSim/Cosys-AirSim 游戏开发(一)XBox 手柄 Windows + python 连接与读取
windows·python·xbox
GoodStudyAndDayDayUp8 分钟前
初入 python Django 框架总结
数据库·python·django
楽码12 分钟前
AI决策树:整理繁杂问题的简单方法
人工智能·后端·openai
星辰大海的精灵17 分钟前
基于Dify+MCP实现通过微信发送天气信息给好友
人工智能·后端·python
ReturnOfMars18 分钟前
AI本地批量生图Agent-Jaaz体验,确实强
人工智能
柠檬味拥抱19 分钟前
人工智能在教育中的角色-AI Agent助力个性化学习与学生辅导
人工智能