迁移学习基础知识

简介

使用迁移学习的优势:

1、能够快速的训练出一个理想的结果

2、当数据集较小时也能训练出理想的效果。

注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。

原理:

对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。

常见的迁移学习的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后基层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层。

(设备有限且需要在很短时间内得到一个比较理想的结果使用第2或第3个方式;硬件设备不受限且希望得到一个最优的结果,使用第1种方式进行训练)

后续知识再接着补充。。。

相关推荐
yusaisai大鱼13 分钟前
TensorFlow如何调用GPU?
人工智能·tensorflow
珠海新立电子科技有限公司3 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董3 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦3 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw4 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr5 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner5 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao5 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama