迁移学习基础知识

简介

使用迁移学习的优势:

1、能够快速的训练出一个理想的结果

2、当数据集较小时也能训练出理想的效果。

注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。

原理:

对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。

常见的迁移学习的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后基层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层。

(设备有限且需要在很短时间内得到一个比较理想的结果使用第2或第3个方式;硬件设备不受限且希望得到一个最优的结果,使用第1种方式进行训练)

后续知识再接着补充。。。

相关推荐
sinat_286945192 分钟前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火1 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴2 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢3 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1433 小时前
51c自动驾驶~合集14
人工智能
C++、Java和Python的菜鸟3 小时前
第六章 统计初步
算法·机器学习·概率论
Jinkxs3 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖4 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频
柠檬味拥抱4 小时前
优化AI智能体行为:Q学习、深度Q网络与动态规划在复杂任务中的研究
人工智能