迁移学习基础知识

简介

使用迁移学习的优势:

1、能够快速的训练出一个理想的结果

2、当数据集较小时也能训练出理想的效果。

注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。

原理:

对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。

常见的迁移学习的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后基层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层。

(设备有限且需要在很短时间内得到一个比较理想的结果使用第2或第3个方式;硬件设备不受限且希望得到一个最优的结果,使用第1种方式进行训练)

后续知识再接着补充。。。

相关推荐
CSDN云计算1 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森12 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112314 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子18 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing31 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
忘梓.1 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类