迁移学习基础知识

简介

使用迁移学习的优势:

1、能够快速的训练出一个理想的结果

2、当数据集较小时也能训练出理想的效果。

注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。

原理:

对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。

常见的迁移学习的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后基层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层。

(设备有限且需要在很短时间内得到一个比较理想的结果使用第2或第3个方式;硬件设备不受限且希望得到一个最优的结果,使用第1种方式进行训练)

后续知识再接着补充。。。

相关推荐
刘大大Leo5 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人7 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程15 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒29 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island131433 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|37 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra37 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑40 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追40 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子44 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络