二分优化dp,LeetCode 1235. Maximum Profit in Job Scheduling

目录

一、题目

1、题目描述

2、接口描述

python3

cpp

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解

python3

cpp


一、题目

1、题目描述

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You're given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

2、接口描述

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {

    }
};

3、原题链接

1235. 规划兼职工作


二、解题报告

1、思路分析

经典区间问题,我们通常处理策略为按照某一端排序

这里按照右端点升序排序

然后定义状态 f[i] 为前 i 个工作所能取得的最大收益

那么f[i + 1] = max(f[i], f[j] + profit[i])

即第 i 个工作选或不选,j要满足endTime[j] <= startTime[i],这个由于我们已经按照右端点升序排序,所以可以二分查找来快速找到 j

2、复杂度

时间复杂度: O(nlogn)空间复杂度:O(n)

3、代码详解

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
        p = sorted(zip(startTime, endTime, profit), key=lambda x:x[1])
        n = len(p)
        f = [0] * (n + 1)
        for i, (s, e, w) in enumerate(p):
            idx = bisect_left(p, s + 1, key=lambda x: x[1], hi = i)
            f[i + 1] = max(f[i], f[idx] + w)
        return f[n]
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
        int n = startTime.size();
        vector<array<int, 3>> p(n);
        for (int i = 0; i < n; i ++)
            p[i] = { startTime[i], endTime[i], profit[i] };

        sort(p.begin(), p.end(), [](const auto& a, const auto& b){
            return a[1] < b[1];
        });
        vector<int> f(n + 1);
        for (int i = 0; i < n; i ++){
            int idx = lower_bound(p.begin(), p.begin() + i, array<int, 3>{ 0, p[i][0] + 1, 0}, [](const auto& a, const auto& b){
                return a[1] < b[1];
            }) - p.begin();
            f[i + 1] = max(f[i], f[idx] + p[i][2]);
        }
        return f[n];
    }
};
相关推荐
ada7_8 小时前
LeetCode(python)——94.二叉
python·算法·leetcode·链表·职场和发展
AI视觉网奇8 小时前
躯体驱动 算法学习笔记
人工智能·算法
不穿格子的程序员8 小时前
从零开始写算法——普通数组类题:数组操作中的“翻转技巧”与“前后缀分解”
数据结构·算法
逝雪Yuki8 小时前
简单多源BFS问题
算法·leetcode·bfs·广度优先遍历
curry____3038 小时前
study in PTA(高精度算法与预处理)(2025.12.3)
数据结构·c++·算法·高精度算法
ChoSeitaku9 小时前
高数强化NO6|极限的应用|连续的概念性质|间断点的定义分类|导数与微分
人工智能·算法·分类
代码游侠9 小时前
学习笔记——栈
开发语言·数据结构·笔记·学习·算法
自然语9 小时前
人工智能之数字生命-情绪
人工智能·算法
Ayanami_Reii9 小时前
进阶数据结构应用-维护序列
数据结构·算法·线段树
_w_z_j_9 小时前
mari和shiny() (多状态dp数组)
算法