二分优化dp,LeetCode 1235. Maximum Profit in Job Scheduling

目录

一、题目

1、题目描述

2、接口描述

python3

cpp

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解

python3

cpp


一、题目

1、题目描述

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You're given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

2、接口描述

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {

    }
};

3、原题链接

1235. 规划兼职工作


二、解题报告

1、思路分析

经典区间问题,我们通常处理策略为按照某一端排序

这里按照右端点升序排序

然后定义状态 f[i] 为前 i 个工作所能取得的最大收益

那么f[i + 1] = max(f[i], f[j] + profit[i])

即第 i 个工作选或不选,j要满足endTime[j] <= startTime[i],这个由于我们已经按照右端点升序排序,所以可以二分查找来快速找到 j

2、复杂度

时间复杂度: O(nlogn)空间复杂度:O(n)

3、代码详解

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
        p = sorted(zip(startTime, endTime, profit), key=lambda x:x[1])
        n = len(p)
        f = [0] * (n + 1)
        for i, (s, e, w) in enumerate(p):
            idx = bisect_left(p, s + 1, key=lambda x: x[1], hi = i)
            f[i + 1] = max(f[i], f[idx] + w)
        return f[n]
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
        int n = startTime.size();
        vector<array<int, 3>> p(n);
        for (int i = 0; i < n; i ++)
            p[i] = { startTime[i], endTime[i], profit[i] };

        sort(p.begin(), p.end(), [](const auto& a, const auto& b){
            return a[1] < b[1];
        });
        vector<int> f(n + 1);
        for (int i = 0; i < n; i ++){
            int idx = lower_bound(p.begin(), p.begin() + i, array<int, 3>{ 0, p[i][0] + 1, 0}, [](const auto& a, const auto& b){
                return a[1] < b[1];
            }) - p.begin();
            f[i + 1] = max(f[i], f[idx] + p[i][2]);
        }
        return f[n];
    }
};
相关推荐
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之8 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓8 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf8 小时前
图论----拓扑排序
算法·图论
我要昵称干什么8 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ9 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl9 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦9 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku9 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯