二分优化dp,LeetCode 1235. Maximum Profit in Job Scheduling

目录

一、题目

1、题目描述

2、接口描述

python3

cpp

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解

python3

cpp


一、题目

1、题目描述

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You're given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

2、接口描述

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {

    }
};

3、原题链接

1235. 规划兼职工作


二、解题报告

1、思路分析

经典区间问题,我们通常处理策略为按照某一端排序

这里按照右端点升序排序

然后定义状态 f[i] 为前 i 个工作所能取得的最大收益

那么f[i + 1] = max(f[i], f[j] + profit[i])

即第 i 个工作选或不选,j要满足endTime[j] <= startTime[i],这个由于我们已经按照右端点升序排序,所以可以二分查找来快速找到 j

2、复杂度

时间复杂度: O(nlogn)空间复杂度:O(n)

3、代码详解

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
        p = sorted(zip(startTime, endTime, profit), key=lambda x:x[1])
        n = len(p)
        f = [0] * (n + 1)
        for i, (s, e, w) in enumerate(p):
            idx = bisect_left(p, s + 1, key=lambda x: x[1], hi = i)
            f[i + 1] = max(f[i], f[idx] + w)
        return f[n]
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
        int n = startTime.size();
        vector<array<int, 3>> p(n);
        for (int i = 0; i < n; i ++)
            p[i] = { startTime[i], endTime[i], profit[i] };

        sort(p.begin(), p.end(), [](const auto& a, const auto& b){
            return a[1] < b[1];
        });
        vector<int> f(n + 1);
        for (int i = 0; i < n; i ++){
            int idx = lower_bound(p.begin(), p.begin() + i, array<int, 3>{ 0, p[i][0] + 1, 0}, [](const auto& a, const auto& b){
                return a[1] < b[1];
            }) - p.begin();
            f[i + 1] = max(f[i], f[idx] + p[i][2]);
        }
        return f[n];
    }
};
相关推荐
计算机小白一个6 小时前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^7 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
大数据追光猿9 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!9 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉9 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生9 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴9 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing9 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财9 小时前
加油站(力扣134)
算法·leetcode·职场和发展
王老师青少年编程9 小时前
【GESP C++八级考试考点详细解读】
数据结构·c++·算法·gesp·csp·信奥赛