二分优化dp,LeetCode 1235. Maximum Profit in Job Scheduling

目录

一、题目

1、题目描述

2、接口描述

python3

cpp

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解

python3

cpp


一、题目

1、题目描述

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You're given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

2、接口描述

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {

    }
};

3、原题链接

1235. 规划兼职工作


二、解题报告

1、思路分析

经典区间问题,我们通常处理策略为按照某一端排序

这里按照右端点升序排序

然后定义状态 f[i] 为前 i 个工作所能取得的最大收益

那么f[i + 1] = max(f[i], f[j] + profit[i])

即第 i 个工作选或不选,j要满足endTime[j] <= startTime[i],这个由于我们已经按照右端点升序排序,所以可以二分查找来快速找到 j

2、复杂度

时间复杂度: O(nlogn)空间复杂度:O(n)

3、代码详解

python3
复制代码
python 复制代码
class Solution:
    def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
        p = sorted(zip(startTime, endTime, profit), key=lambda x:x[1])
        n = len(p)
        f = [0] * (n + 1)
        for i, (s, e, w) in enumerate(p):
            idx = bisect_left(p, s + 1, key=lambda x: x[1], hi = i)
            f[i + 1] = max(f[i], f[idx] + w)
        return f[n]
cpp
复制代码
cpp 复制代码
class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
        int n = startTime.size();
        vector<array<int, 3>> p(n);
        for (int i = 0; i < n; i ++)
            p[i] = { startTime[i], endTime[i], profit[i] };

        sort(p.begin(), p.end(), [](const auto& a, const auto& b){
            return a[1] < b[1];
        });
        vector<int> f(n + 1);
        for (int i = 0; i < n; i ++){
            int idx = lower_bound(p.begin(), p.begin() + i, array<int, 3>{ 0, p[i][0] + 1, 0}, [](const auto& a, const auto& b){
                return a[1] < b[1];
            }) - p.begin();
            f[i + 1] = max(f[i], f[idx] + p[i][2]);
        }
        return f[n];
    }
};
相关推荐
高山上有一只小老虎2 小时前
字符串字符匹配
java·算法
愚润求学2 小时前
【动态规划】专题完结,题单汇总
算法·leetcode·动态规划
林太白2 小时前
跟着TRAE SOLO学习两大搜索
前端·算法
ghie90903 小时前
图像去雾算法详解与MATLAB实现
开发语言·算法·matlab
云泽8083 小时前
从三路快排到内省排序:探索工业级排序算法的演进
算法·排序算法
weixin_468466853 小时前
遗传算法求解TSP旅行商问题python代码实战
python·算法·算法优化·遗传算法·旅行商问题·智能优化·np问题
·白小白4 小时前
力扣(LeetCode) ——43.字符串相乘(C++)
c++·leetcode
FMRbpm4 小时前
链表5--------删除
数据结构·c++·算法·链表·新手入门
程序员buddha4 小时前
C语言操作符详解
java·c语言·算法
John_Rey4 小时前
API 设计哲学:构建健壮、易用且符合惯用语的 Rust 库
网络·算法·rust