【Python】 逻辑回归:从训练到预测的完整案例


我把我唱给你听

把你纯真无邪的笑容给我吧

我们应该有快乐的

幸福的晴朗的时光

我把我唱给你听

用我炙热的感情感动你好吗

岁月是值得怀念的留恋的

害羞的红色脸庞

谁能够代替你呀

趁年轻尽情的爱吧

最最亲爱的人啊

路途遥远我们在一起吧

🎵 叶蓓《想把我唱给你听》


逻辑回归是监督学习中常用的一种分类算法,尤其擅长于二分类问题。在本文中,我们将通过一个具体的案例,展示如何使用逻辑回归进行模型训练,并在一个新的数据集上进行预测验证。

1. 案例介绍

假设我们的任务是根据病人的体检数据来预测其是否有患糖尿病的风险。我们将使用公开的Pima印第安人糖尿病数据集来训练我们的模型。这个数据集包含了病人的多种生理健康指标,如:怀孕次数、胰岛素水平、体重指数(BMI)、年龄等。

2. 数据预处理

在开始模型训练前,首先需要对数据进行预处理:

数据清洗:检查并处理数据中的缺失值或异常值。

特征选择:选择对预测糖尿病有显著影响的特征。

数据分割:将数据集分为训练集和测试集,比如使用70%的数据进行训练,30%的数据用于测试。

3. 模型训练

使用Python的scikit-learn库来进行逻辑回归模型的训练:

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载数据
data = pd.read_csv('pima_indians_diabetes.csv')
X = data.drop('Outcome', axis=1)
y = data['Outcome']

# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测测试集
predictions = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy:.2f}")

4. 新数据集上的预测验证

为了进一步验证模型的泛化能力,我们可以在另一个相关的新数据集上进行测试。假设这个新数据集来自另一地区的病人数据,具有相同的特征结构。

python 复制代码
# 加载新的数据集
new_data = pd.read_csv('new_diabetes_data.csv')
X_new = new_data.drop('Outcome', axis=1)
y_new = new_data['Outcome']

# 使用已训练的模型进行预测
new_predictions = model.predict(X_new)

# 计算新数据集的准确率
new_accuracy = accuracy_score(y_new, new_predictions)
print(f"New Dataset Accuracy: {new_accuracy:.2f}")

5. 结论

通过上述案例,我们可以看到逻辑回归不仅能有效处理二分类问题,而且操作简单,易于实现。同时,通过在不同的数据集上进行预测验证,我们能够评估模型的泛化能力和实用性。逻辑回归模型特别适用于那些特征与结果之间具有明显线性关系的场景。

总结来说,逻辑回归是一种强大而灵活的工具,能够帮助研究者和开发者解决实际问题,尤其在医学、金融等领域的应用尤为广泛。希望本文能够帮助你理解和运用逻辑回归,为你的数据分析项目提供支持。

相关推荐
九年义务漏网鲨鱼2 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij3 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf