AtCoder Beginner Contest 352(补题)E

Problem Statement

You are given a weighted undirected graph 𝐺G with 𝑁N vertices, numbered 11 to 𝑁N. Initially, 𝐺G has no edges.

You will perform 𝑀M operations to add edges to 𝐺G. The 𝑖i-th operation (1≤𝑖≤𝑀)(1≤i≤M) is as follows:

  • You are given a subset of vertices 𝑆𝑖={𝐴𝑖,1,𝐴𝑖,2,...,𝐴𝑖,𝐾𝑖}Si={Ai,1,Ai,2,...,Ai,Ki} consisting of 𝐾𝑖Ki vertices. For every pair 𝑢,𝑣u,v such that 𝑢,𝑣∈𝑆𝑖u,v∈Si and 𝑢<𝑣u<v, add an edge between vertices 𝑢u and 𝑣v with weight 𝐶𝑖Ci.

After performing all 𝑀M operations, determine whether 𝐺G is connected. If it is, find the total weight of the edges in a minimum spanning tree of 𝐺G.

问题陈述

给你一个加权无向图 𝐺G ,其中有 𝑁N 个顶点,编号为 11 至 𝑁N 。最初, 𝐺G 没有边。

您需要执行 𝑀M 次操作来为 𝐺G 添加边。 𝑖i -th 操作 (1≤𝑖≤𝑀)(1≤i≤M) 如下所示:

  • 给你一个由 𝐾𝑖Ki 个顶点组成的顶点子集 𝑆𝑖={𝐴𝑖,1,𝐴𝑖,2,...,𝐴𝑖,𝐾𝑖}Si={Ai,1,Ai,2,...,Ai,Ki} 。对于每一对 𝑢,𝑣u,v ,即 𝑢,𝑣∈𝑆𝑖u,v∈Si 和 𝑢<𝑣u<v ,在顶点 𝑢u 和 𝑣v 之间添加一条边,权重为 𝐶𝑖Ci 。

执行所有 𝑀M 操作后,确定 𝐺G 是否相连。如果是,求 𝐺G 最小生成树中各条边的总重。

题意:

就是给定n个点,和m次操作 ,

每次操作给定 这个操作有 k个点 和 这k个点两两的边为 c

问构成的最小生成树。

思路:

我们可以先选着小的权重 间点进行连边。

可是这又m个操作,我们可以队这 m个操作进行排序;

对每次搞作,我们可以用并查集对 其操作中的每个点,进行求并查集求它的父节点。

当在这次搞作,存在有2个不同的父节点,这时,我们将这连个节点连起来,相当于这两个集合联通。

最小生成树满足全部的点都相连,且路径最小。

特判如果存在不止1个集合,返回-1。

代码:

#include<bits/stdc++.h>
using namespace std;
class dsu
{
	public:
	vector<int> p;
	int n;
	dsu(int _n):n(_n)
	{
		p.resize(n);
		iota(p.begin(),p.end(),0);
	}
	inline int get(int x)
	{
		return (x == p[x])?x : (p[x] = get(p[x]));
	}
	
	inline bool unite(int x,int y)
	{
		x = get(x);
		y = get(y);
		if(x != y)
		{
			p[x] = y;
			return true;
		}
		return false;
	}
};
int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	int n,m;
	cin >> n >>m;
	vector<int> c(m);
	vector<vector<int>> v(m);
	for(int i = 0;i < m;i++)
	{
		int foo;
		cin >> foo >> c[i];
		v[i].resize(foo);
		for(int j =0;j < foo;j++)
		{
			cin >> v[i][j];
			--v[i][j]; //为了重 0开始  0 ~ n-1这些点 
		}
	}
	
	vector<int> order(m);
	iota(order.begin(),order.end(),0); // 重 0 开始 的 一个递增 
	sort(order.begin(),order.end(),[&](int i,int j)
	{
		return c[i]<c[j];	 // 权值小的先整 
	});
	
//	for(int i = 0;i < m;i++)
//	{
//		cout <<order[i]<<endl;
//	}
	int comps = n;//找个集合多少个点  
	dsu d(n);
	int64_t ans = 0;
	for(int i : order)
	{
		set<int> s;
		for(int j : v[i])
		{
			s.insert(d.get(j)); // j的父节点 存入 
		}
		
		vector<int> u(s.begin(),s.end());
		
		for(int j = 1;j < int(u.size());j++) //遍历父节点的 只要将父节点连在一起就行 
		{
			assert(d.unite(u[j-1],u[j])); // 他们的父节点有关联 可以连在一起 
			comps -= 1;
			ans += c[i];
		}
		s
	}
	
	
	cout << (comps == 1 ? ans :-1) <<'\n';
	
	
	
	
	
	return 0;
}

时间复杂度:O(n*m*logn)

相关推荐
xiaoshiguang39 分钟前
LeetCode:222.完全二叉树节点的数量
算法·leetcode
爱吃西瓜的小菜鸡10 分钟前
【C语言】判断回文
c语言·学习·算法
别NULL12 分钟前
机试题——疯长的草
数据结构·c++·算法
TT哇16 分钟前
*【每日一题 提高题】[蓝桥杯 2022 国 A] 选素数
java·算法·蓝桥杯
yuanbenshidiaos2 小时前
C++----------函数的调用机制
java·c++·算法
唐叔在学习2 小时前
【唐叔学算法】第21天:超越比较-计数排序、桶排序与基数排序的Java实践及性能剖析
数据结构·算法·排序算法
ALISHENGYA2 小时前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
chengooooooo2 小时前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
jackiendsc2 小时前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
FeboReigns2 小时前
C++简明教程(文章要求学过一点C语言)(1)
c语言·开发语言·c++