机器学习中的简单指数平滑(SES)

简单指数平滑(Simple Exponential Smoothing)是一种常用的时间序列预测方法,用于对时间序列数据进行平滑处理并进行未来数值的预测。

简单指数平滑的核心思想是基于过去观测值的加权平均来预测未来的值,其中较近的观测值被赋予更高的权重。该方法假设时间序列的未来值与过去的观测值相关,并且随着时间的推移,过去观测值的权重以指数方式递减。

下面是一个简单指数平滑的Python示例:

python 复制代码
```python
import numpy as np

def simple_exponential_smoothing(series, alpha):
    """
    简单指数平滑

    参数:
    - series:时间序列数据,一个一维的NumPy数组
    - alpha:平滑系数,取值范围为[0, 1]

    返回值:
    - smoothed:平滑后的时间序列,与输入序列长度相同
    """

    smoothed = np.zeros_like(series)  # 用于存储平滑后的时间序列
    smoothed[0] = series[0]  # 初始值即为第一个观测值

    for t in range(1, len(series)):
        smoothed[t] = alpha * series[t] + (1 - alpha) * smoothed[t-1]  # 平滑公式

    return smoothed

# 示例用法
series = np.array([10, 12, 14, 16, 18])  # 输入的时间序列数据
alpha = 0.5  # 平滑系数

smoothed_series = simple_exponential_smoothing(series, alpha)
print(smoothed_series)
```

在上述示例中,我们定义了一个名为`simple_exponential_smoothing`的函数,它接受一个一维的NumPy数组作为输入的时间序列数据,以及一个平滑系数`alpha`。函数内部使用一个循环来计算每个时间点的平滑值,然后将其存储在`smoothed`数组中,并在最后返回该数组。

在示例中,我们使用输入序列`[10, 12, 14, 16, 18]`和平滑系数`0.5`进行简单指数平滑。输出结果为`[10.0, 11.0, 12.5, 14.25, 16.125]`,表示对输入序列进行平滑后得到的平滑时间序列。

简单指数平滑是一种简单但有效的时间序列预测方法,适用于一些较为平稳的序列。但它也有一些限制,例如对于具有较强趋势或季节性的序列,可能表现不佳。在实际应用中,还可以使用其他更复杂的指数平滑变体或其他时间序列预测方法来改进预测性能。

相关推荐
DuHz几秒前
自动驾驶雷达干扰缓解:探索主动策略论文精读
论文阅读·人工智能·算法·机器学习·自动驾驶·汽车·信号处理
LDG_AGI21 分钟前
【机器学习】深度学习推荐系统(二十七): X 推荐算法rerank机制详解
深度学习·机器学习·推荐算法
LDG_AGI21 分钟前
【机器学习】深度学习推荐系统(二十五): X 推荐算法特征系统详解:230+ 特征全解析
人工智能·分布式·深度学习·算法·机器学习·推荐算法
LDG_AGI34 分钟前
【机器学习】深度学习推荐系统(二十八):X 推荐算法listwiseRescoring(同刷多样性降权)机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法
学术小白人40 分钟前
2026 年人工智能与社交网络系统国际学术会议暨智能与网络安全研讨圆满落幕
大数据·人工智能·科技·物联网·机器学习
格林威44 分钟前
Baumer相机最新SDK开发_下载_封装
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·halcon
知乎的哥廷根数学学派1 小时前
基于物理约束指数退化与Hertz接触理论的滚动轴承智能退化趋势分析(Pytorch)
开发语言·人工智能·pytorch·python·深度学习·算法·机器学习
Zilliz Planet1 小时前
官宣,Milvus开源语义高亮模型:告别饱和检索,帮RAG、agent剪枝80%上下文
人工智能·算法·机器学习·剪枝·milvus
(; ̄ェ ̄)。1 小时前
机器学习入门(七)线性回归,数学计算流程,含梯度下降,损失函数
人工智能·机器学习·线性回归
倔强的石头1061 小时前
机器学习基本术语大拆解 —— 用西瓜数据集逐个对应
人工智能·机器学习