机器学习中的简单指数平滑(SES)

简单指数平滑(Simple Exponential Smoothing)是一种常用的时间序列预测方法,用于对时间序列数据进行平滑处理并进行未来数值的预测。

简单指数平滑的核心思想是基于过去观测值的加权平均来预测未来的值,其中较近的观测值被赋予更高的权重。该方法假设时间序列的未来值与过去的观测值相关,并且随着时间的推移,过去观测值的权重以指数方式递减。

下面是一个简单指数平滑的Python示例:

python 复制代码
```python
import numpy as np

def simple_exponential_smoothing(series, alpha):
    """
    简单指数平滑

    参数:
    - series:时间序列数据,一个一维的NumPy数组
    - alpha:平滑系数,取值范围为[0, 1]

    返回值:
    - smoothed:平滑后的时间序列,与输入序列长度相同
    """

    smoothed = np.zeros_like(series)  # 用于存储平滑后的时间序列
    smoothed[0] = series[0]  # 初始值即为第一个观测值

    for t in range(1, len(series)):
        smoothed[t] = alpha * series[t] + (1 - alpha) * smoothed[t-1]  # 平滑公式

    return smoothed

# 示例用法
series = np.array([10, 12, 14, 16, 18])  # 输入的时间序列数据
alpha = 0.5  # 平滑系数

smoothed_series = simple_exponential_smoothing(series, alpha)
print(smoothed_series)
```

在上述示例中,我们定义了一个名为`simple_exponential_smoothing`的函数,它接受一个一维的NumPy数组作为输入的时间序列数据,以及一个平滑系数`alpha`。函数内部使用一个循环来计算每个时间点的平滑值,然后将其存储在`smoothed`数组中,并在最后返回该数组。

在示例中,我们使用输入序列`[10, 12, 14, 16, 18]`和平滑系数`0.5`进行简单指数平滑。输出结果为`[10.0, 11.0, 12.5, 14.25, 16.125]`,表示对输入序列进行平滑后得到的平滑时间序列。

简单指数平滑是一种简单但有效的时间序列预测方法,适用于一些较为平稳的序列。但它也有一些限制,例如对于具有较强趋势或季节性的序列,可能表现不佳。在实际应用中,还可以使用其他更复杂的指数平滑变体或其他时间序列预测方法来改进预测性能。

相关推荐
蒋星熠35 分钟前
深度学习实战指南:从神经网络基础到模型优化的完整攻略
人工智能·python·深度学习·神经网络·机器学习·卷积神经网络·transformer
java1234_小锋1 小时前
Scikit-learn Python机器学习 - 分类算法 - K-近邻(KNN)算法
python·算法·机器学习
手握风云-1 小时前
回溯剪枝的 “减法艺术”:化解超时危机的 “救命稻草”(二)
算法·机器学习·剪枝
剪一朵云爱着2 小时前
一文入门:机器学习
人工智能·机器学习
hi0_62 小时前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
IT古董3 小时前
【漫话机器学习系列】003.Agglomerative聚类
人工智能·算法·机器学习
xchenhao5 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao5 小时前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
deephub5 小时前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
明月照山海-5 小时前
机器学习周报十三
人工智能·机器学习·概率论