机器学习中的简单指数平滑(SES)

简单指数平滑(Simple Exponential Smoothing)是一种常用的时间序列预测方法,用于对时间序列数据进行平滑处理并进行未来数值的预测。

简单指数平滑的核心思想是基于过去观测值的加权平均来预测未来的值,其中较近的观测值被赋予更高的权重。该方法假设时间序列的未来值与过去的观测值相关,并且随着时间的推移,过去观测值的权重以指数方式递减。

下面是一个简单指数平滑的Python示例:

python 复制代码
```python
import numpy as np

def simple_exponential_smoothing(series, alpha):
    """
    简单指数平滑

    参数:
    - series:时间序列数据,一个一维的NumPy数组
    - alpha:平滑系数,取值范围为[0, 1]

    返回值:
    - smoothed:平滑后的时间序列,与输入序列长度相同
    """

    smoothed = np.zeros_like(series)  # 用于存储平滑后的时间序列
    smoothed[0] = series[0]  # 初始值即为第一个观测值

    for t in range(1, len(series)):
        smoothed[t] = alpha * series[t] + (1 - alpha) * smoothed[t-1]  # 平滑公式

    return smoothed

# 示例用法
series = np.array([10, 12, 14, 16, 18])  # 输入的时间序列数据
alpha = 0.5  # 平滑系数

smoothed_series = simple_exponential_smoothing(series, alpha)
print(smoothed_series)
```

在上述示例中,我们定义了一个名为`simple_exponential_smoothing`的函数,它接受一个一维的NumPy数组作为输入的时间序列数据,以及一个平滑系数`alpha`。函数内部使用一个循环来计算每个时间点的平滑值,然后将其存储在`smoothed`数组中,并在最后返回该数组。

在示例中,我们使用输入序列`[10, 12, 14, 16, 18]`和平滑系数`0.5`进行简单指数平滑。输出结果为`[10.0, 11.0, 12.5, 14.25, 16.125]`,表示对输入序列进行平滑后得到的平滑时间序列。

简单指数平滑是一种简单但有效的时间序列预测方法,适用于一些较为平稳的序列。但它也有一些限制,例如对于具有较强趋势或季节性的序列,可能表现不佳。在实际应用中,还可以使用其他更复杂的指数平滑变体或其他时间序列预测方法来改进预测性能。

相关推荐
Coding茶水间8 小时前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
dulu~dulu10 小时前
机器学习题目总结(一)
人工智能·神经网络·决策树·机器学习·学习笔记·线性模型·模型评估与选择
Niuguangshuo10 小时前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
做科研的周师兄11 小时前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
那小子、真烦11 小时前
T-RAG:LLM实战中的树结构增强经验(中文翻译)
机器学习
Narrastory11 小时前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
不惑_12 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
小兔崽子去哪了12 小时前
机器学习 线性回归
后端·python·机器学习
沃恩智慧12 小时前
不确定性量化难题破解!贝叶斯+LSTM,革新时序预测!
人工智能·机器学习·lstm
Narrastory13 小时前
最大似然估计,香农熵,交叉熵与KL散度的详细解读与实现
人工智能·机器学习