一起深度学习24/04/30——ResNet

ResNet神经网络

定义ResNet Block

ResNet Block 的作用:

是一个残差块,用于构建ResNet

主要是为了解决神经网络中的梯度爆炸和梯度消失问题,以及缓解训练过程中的退化问题。

在传统的神经网络中,每层的输出会直接作为下一层的输入,可能会导致梯度在反向传播过程中逐渐减小,当层数比较深时,就可能导致梯度消失。故引入了跳跃连接,将每一层的输出与最初的x进行相加,当你对其进行求导,能发现比传统的多了一项对x的求导,也就是因为该项,避免了梯度消失的问题。

python 复制代码
class ResBlk(nn.Module):
    """
    resnet Block
    """
    def __init__(self,ch_in,ch_out,stride):
        super(ResBlk,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=ch_in,out_channels=ch_out,kernel_size=3,stride=stride,padding=1)
        print(self.conv1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(in_channels=ch_out, out_channels=ch_out, kernel_size=3, stride=1, padding=1)
        print(self.conv2)
        self.bn2 = nn.BatchNorm2d(ch_out)
	
        self.extra =nn.Sequential()#当输入通道数并不等于输出通道数的时候,进行转换。
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                # [b,ch_in,h,w] =>[b,ch_out,h,w]
                nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
                nn.BatchNorm2d(ch_out)
            )

    def forward(self,x):
        """
        :param x: [b,ch,h,w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        #shor cut
        # x :[b,ch_in,h,w]  而out [b,ch_out,h,w]
        out = self.extra(x) +out #resNet的精髓所在,能够避免过拟合,梯度爆炸,梯度消失,
        return out

运行测试一下:

python 复制代码
def main():
    blk = ResBlk(64,128,stride=4)
    tmp = torch.randn(2,64,32,32)
    out = blk(tmp)
    print(out.shape)
if __name__ == '__main__':
    main()

在这里说明一下其中的疑惑,在做该模块的时候

blk = ResBlk(64,128,stride=4) #64是输入通道数,128表示输出通道数。

tmp = torch.randn(2,64,32,32) # 2是样本数量,64是输入通道数,32是形状。

out = blk(tmp) #将其传入到ResBlok中,进行运算。

输出为torch.Size([2, 128, 8, 8])。

定义ResNet18

python 复制代码
class ResNet18(nn.Module):
    def __init__(self):
        super(ResNet18,self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
            nn.BatchNorm2d(64)
        )
        # followed 4 blocks
        # [b,64,h,w] => [b,128,h,w]
        self.blk1 =  ResBlk(64,128,stride=2)
        # [b,128,h,w] => [b,256,h,w]
        self.blk2 = ResBlk(128,256,stride=2)
        # [b,256,h,w] => [b,512,h,w]
        self.blk3 = ResBlk(256, 512,stride=2)
        # [b,512,h,w] => [b,1024,h,w]
        self.blk4 = ResBlk(512, 512,stride=2)

        self.outlayer = nn.Linear(512,10)
    def forward(self,x):
        x = F.relu(self.conv1(x))

        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        x = F.adaptive_avg_pool2d(x,[1,1])
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)

        return x

加载数据集并训练、测试

python 复制代码
import torch
import torchvision.transforms
from torch import nn, optim
from torchvision import datasets
from torch.utils.data import DataLoader
# from lenet5 import Lenet5
from learing_resnet import ResNet18
def main():
    batchsz = 32
    cifar_train= datasets.CIFAR10('data',train=True,transform=torchvision.transforms.Compose([
        torchvision.transforms.Resize((32,32)),
        torchvision.transforms.ToTensor()
    ]),download=True)
    cifar_train = DataLoader(cifar_train,batch_size=batchsz,shuffle=True)

    cifar_test= datasets.CIFAR10('data',train=False,transform=torchvision.transforms.Compose([
        torchvision.transforms.Resize((32,32)),
        torchvision.transforms.ToTensor()
    ]),download=True)
    cifar_test = DataLoader(cifar_test,batch_size=batchsz,shuffle=True)

    # x, label = iter(cifar_train)
    # print("x:",x.shape,"label:",label.shape)
    device  = torch.device('cuda')
    # model = Lenet5().to(device)
    model = ResNet18().to(device)
    criten = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(),lr=1e-3)
    for epoch in range(1000):
        for batchidx,(x,lable) in enumerate(cifar_train):
            x,lable = x.to(device),lable.to(device)
            logits = model(x)
            loss = criten(logits,lable)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print(epoch,loss.item())
        total_correct = 0
        total_num = 0
        model.eval()
        with torch.no_grad():
            for x,label in cifar_test:
                x,label = x.to(device),label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                total_correct += torch.eq(pred,label).float().sum().item()
                total_num += x.size(0)
            acc = total_correct /total_num
            print(epoch,acc)

if __name__ == '__main__':
    main()
相关推荐
shuououo33 分钟前
YOLOv4 核心内容笔记
人工智能·计算机视觉·目标跟踪
DO_Community4 小时前
普通服务器都能跑:深入了解 Qwen3-Next-80B-A3B-Instruct
人工智能·开源·llm·大语言模型·qwen
WWZZ20254 小时前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
deephub4 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP4 小时前
BERT系列模型
人工智能·深度学习·bert
兰亭妙微5 小时前
ui设计公司审美积累 | 金融人工智能与用户体验 用户界面仪表盘设计
人工智能·金融·ux
AKAMAI6 小时前
安全风暴的绝地反击 :从告警地狱到智能防护
运维·人工智能·云计算
岁月宁静6 小时前
深度定制:在 Vue 3.5 应用中集成流式 AI 写作助手的实践
前端·vue.js·人工智能
galaxylove6 小时前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
格林威6 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造